
U.S. Fish & Wildlife Service

Atlantic Coast Wintering
Sea Duck Survey
2008–2011

1



ATLANTIC COAST WINTERING SEA DUCK SURVEY, 2008-2011 

 

December 2012 

 

 

 

 

 

 

Emily D. Silverman 
Jeffery B. Leirness 
David T. Saalfeld 
Mark D. Koneff 
Ken D. Richkus 

 
Division of Migratory Bird Management 

U.S. Fish & Wildlife Service 
11510 American Holly Drive 

Laurel, MD 20708 
 

 

 

 

 

 

 

 

 

 

 

Cover: Black scoter along the south shore of the St. Lawrence Estuary near Trois-Pistoles, May 2009. 
Courtesy of Christine LePage, Canadian Wildlife Service, Quebec Region.  



In Memoriam 

This report is dedicated to our colleague and friend, Thom Lewis, who died in the line of duty, while 

training for aerial surveys.  Thom was a passionate wildlife biologist whose love and knowledge of 

nature, easy-going humor, attention to detail, and commitment to waterfowl conservation is deeply 

missed.  His example continues to inspire us. 

Acknowledgements 

This survey would not be possible without the dedication of the pilots and observers who collected data 

under dangerous and often extreme conditions.  Thanks also go to K. Fleming and K. Luke for GIS 

support and A. Royle, D. Rypkema, E. Zipkin, and J. Reynolds, who provided helpful comments on the 

survey design and abundance models.  Data collection and analyses funded in part by the Sea Duck Joint 

Venture, the Atlantic Coast Joint Venture, the Bureau of Ocean Energy Management, and the Atlantic 

Marine Assessment Program for Protected Species.  

Survey Crews 

Year Crew* Pilot Right seat observer 

2008 North Coast John K. Bidwell Timothy P. White, Paul I. Padding, Holliday H. Obrecht 

 South Coast James S. Wortham Matthew Perry, Terry S. Liddick 

 3441 Mark D. Koneff, James S. Wortham Terry S. Liddick 

 4051 Carl F. Ferguson Doug J. Forsell, Thomas E. Lewis 

 4206 Fred H. Roetker Timothy P. White 

2009 Coast Mark D. Koneff Doug J. Forsell 

 3306 Walt E. Rhodes John W. Solberg 

 3821 Terry S. Liddick Fred H. Roetker, Holliday H. Obrecht 

 4141 James S. Wortham, John K. Bidwell Timothy P. White, Thomas E. Lewis  

 4446 John K. Bidwell Thomas E. Lewis 

2010 3411 Walt E. Rhodes M. Tim Jones 

 3916 Terry S. Liddick Holliday H. Obrecht, Nate J. Carle 

 4121 James S. Wortham Thomas E. Lewis 

 4446 John K. Bidwell Timothy P. White 

 Mid-Coast 
Replicates 

Mark D. Koneff G. Scott Boomer, Paul I. Padding, Thomas E. Lewis 

2011 3501 Walt E. Rhodes Holliday H. Obrecht 

 3906 James S. Wortham, Walt E. Rhodes Stephen D. Earsom 

 4116 James P. Bredy Thomas E. Lewis 

 4446 Mark D. Koneff Timothy P. White 
 * Numbers indicate the latitude (degrees-minutes) of the northern-most transect in the crew area. 



iv 
 

Table of Contents 

 

1.  Executive Summary  

1.1 Background  ...............................................................................................................  1 

1.2 Survey design & analysis  ..........................................................................................  1 

1.3 Abundance estimates .................................................................................................  2 

1.4 Questions to consider for survey evaluation  .............................................................  2 

2.  Introduction  .....................................................................................................................  3 

3.  Methods  

3.1 Survey description .....................................................................................................  4 

3.2 Analysis  .....................................................................................................................  5 

3.2.1 Identification of regions of high use  ................................................................  5 

3.2.2 Abundance model fitting  .................................................................................  6 

3.2.3 Estimation and bootstrapping  ..........................................................................  8 

3.2.4 Stratification  ....................................................................................................  9 

3.2.5 Power calculation  ............................................................................................            10 

4.  Results  

4.1 Identification of survey strata   ..................................................................................            11 

4.2 Abundance estimation  ...............................................................................................            14 

4.3 Effect of effort & stratification on the precision of estimation  .................................            19 

4.4 Power  ........................................................................................................................            22 

5.  Discussion   

5.1 Model performance & next steps for abundance estimation  .....................................            23 

5.2 Improving precision through survey design changes  ................................................            25 

6.  References  .......................................................................................................................            26 

  



ii 
 

Appendix 1: Wintering sea duck distributions along the Atlantic coast of the United States 

1.  Abstract  ...........................................................................................................................  A1-1 

2.  Introduction  .....................................................................................................................  A1-2 

3.  Methods  

3.1 Survey description .....................................................................................................  A1-3 

3.2 Sea duck observations   ..............................................................................................  A1-4 

3.3 Physical features and tides .........................................................................................  A1-4 

3.4 Data analysis  

3.4.1 Species distributions  ........................................................................................  A1-5 

3.4.2 Occurrence relative to physical features and tides  ..........................................  A1-7 

4.  Results  .............................................................................................................................  A1-8 

5.  Discussion  .......................................................................................................................  A1-11 

6.  Management implications  ...............................................................................................  A1-13 

7.  References  .......................................................................................................................  A1-13 

 

Appendix 2: Fitting statistical distributions to sea duck count data: implications for survey design and 
abundance estimation 

1.  Abstract  ...........................................................................................................................  A2-2 

2.  Introduction  .....................................................................................................................  A2-2 

3.  Methods  

3.1 Data collection  ..........................................................................................................  A2-5 

3.2 Analysis  .....................................................................................................................  A2-6 

4.  Results  .............................................................................................................................  A2-8 

4.1 Distribution of number of flocks present  ..................................................................  A2-8 

4.2 Distribution of flock sizes  .........................................................................................  A2-8 

5.  Discussion  .......................................................................................................................  A2-10 

6.  References  .......................................................................................................................  A2-14 

  



iii 
 

Tables  

Table 1. Estimated total observable birds in the survey area by species and year, and the three-
year mean (SE), for 2009-11; average annual coefficient of variation for survey as flown and for 
stratification assuming five crews.  ....................................................................................................    2 

Table 2:  Six stratification scenarios.  ...............................................................................................  12 

Table 3: Estimated total observable birds in the survey area, estimated standard error, and 
coefficient of variation by species and year, along with the three-year mean values.  ......................  14 

Table 4: Estimated three-year mean abundance (estimated SE) in thousands, by survey region 
and species.  .......................................................................................................................................  15 

Table 5: Proportion of scoters identified by species and year.  .........................................................  16 

Table 6:  Average annual coefficients of variation for the current survey design and effort, the 
five species-specific stratifications, the five-species omnibus stratification and the five-species 
stratification assuming five crews at current effort.  ..........................................................................  21 

Table 7: The number of years to detect a decline in total abundance (Total birds > 0) and the 
number of flocks (No. of flocks > 0) with 80% power and  = 0.1 or 90% power and  = 0.05 for 
common eider and long-tailed duck.  .................................................................................................  23 

Table A1.1. Survey effort, 2008-11.  ................................................................................................   A1-16 

Table A1.2. Percent of transects within each difference category, estimating inter-annual 
variation in transect densities, 2009-11.  ............................................................................................   A1-17 

Table A1.3. Mean (SD) of the bathymetry measurements for the three off-coast profile 
categories, Nantucket Shoals, and the Bays/Sounds. .........................................................................   A1-17 

Table A1.4. Proportion of flocks by distance, depth, and slope categories for each species and 
transect type.  .....................................................................................................................................  A1-18 

Table A1.5. Mean (SD) for coastal features associated with common eider, white-winged scoter, 
long-tailed duck, surf scoter, and black scoter flocks.  ......................................................................   A1-20 

Table A2.1. Log-likelihood and parameter estimates for distributions fit to data on the number of 
flocks per transect for common eider, long-tailed duck, and all scoters combined.  .........................   A2-18 

Table A2.2. Model selection results for each model fit to non-zero flock size data for common 
eider, long-tailed duck, all scoter species combined.  ........................................................................   A2-19 

Table A2.3. Parameter estimates for the top five models to the flock size data for: all species 
combined, common eider, long-tailed duck, and scoters (listed in order by AICc).  .........................   A2-20 

Table A2.4. Parameters and probability mass functions for the four distributions that we compare 
using the data on the number of sea duck flocks per transect.  ..........................................................   A2-21 

Table A2.5. Parameters and probability mass functions for the seven distributions that we 
compare using the sea duck flock size data.  .....................................................................................   A2-22 



iv 
 

Figures 

Figure 1:  Flowchart illustrating the steps in the estimation and bootstrapping procedure.  .............    9 

Figure 2:  Ten sea duck strata identified by clustering analysis.  ......................................................  13 

Figure 3:  Flock count distributions by year and species.  ................................................................  17 

Figure 4:  Boxplots of log[flock size] by year and species.  .............................................................  18 

Figure 5:  Estimated probability of presence by latitude for a transect of average area.  .................  19 

Figure 6:  Average annual coefficient of variation versus survey effort and stratification scenario 
by species.  .........................................................................................................................................  20 

Figure A1.1. Location of Atlantic Coast Wintering Sea Duck surveys, 2009-11.  ...........................   A1-21 

Figure A1.2. Three-year density regions for common eider, white-winged scoter, long-tailed 
duck, and surf scoter estimated using the SKATER algorithm.  .......................................................   A1-22 

Figure A1.3. Three-year density regions for black scoter estimated using the SKATER algorithm. 
 ...........................................................................................................................................................   A1-23 

Figure A1.4. Density regions for common eider (12 regions) and white-winged scoter (2 regions) 
with transect densities.  ......................................................................................................................   A1-24 

Figure A1.5. Density regions for long-tailed duck (4 regions) and surf scoter (3 regions) with 
transect densities.  ..............................................................................................................................   A1-25 

Figure A1.6. Density regions for black scoter with annual transect densities.  ................................   A1-26 

Figure A1.7. Transects coded by bathymetry classification identified by k-means clustering 
analysis.  .............................................................................................................................................   A1-27 

Figure A1.8. Density regions for common eider and white-winged scoter with annual transect 
densities.  ...........................................................................................................................................   A1-28 

Figure A1.9. Density regions for long-tailed duck and surf scoter with annual transect densities.  .   A1-29 

Figure A2.1. Model fits and observed probabilities for count data for the three species groups: 
common eider, long-tailed duck, and scoters.  ...................................................................................   A2-23 

Figure A2.2. Simulated and observed data for all species fitted using the seven distributions that 
we compared.  ....................................................................................................................................   A2-24 



1 
 

1.  Executive Summary 

1.1 Background 

In 2005, the Sea Duck Join Venture’s Monitoring Working Group identified the development of a winter 

sea duck survey along the Atlantic coast of the United States/Canada as a high priority. Winter 

distributional data are necessary to assess threats to sea ducks from hunting, coastal development, and 

marine activities. Winter abundance estimates may also provide cost-effective, feasible indices of 

population size for some species.   

Monitoring of sea ducks along the eastern seaboard has been limited in range and utility, and 

adequate estimates of abundance and trend are lacking.  The Atlantic Flyway Sea Duck Survey, an aerial 

survey conducted between 1991 and 2002, consisted of a single track flown parallel to the coast, one-

quarter mile offshore; the resulting data did not allow estimation of winter population sizes or the 

quantification of survey precision.  Subsequent surveys, which included offshore areas, were conducted 

only in the mid-Atlantic, in the vicinity of the Chesapeake and Delaware Bays.  To expand on these 

efforts and address the Sea Duck Joint Venture priority, the U.S. Fish & Wildlife Service conducted four 

years of exploratory survey work, aimed at developing a rigorously designed, coast-wide, offshore winter 

sea duck survey.   

 
1.2 Survey design & analysis 

The experimental survey was conducted along the Atlantic coast from the U.S.-Canadian border to Palm 

Beach, FL between January and March in 2008-11.  The design of the survey varied over the four years in 

response to lessons learned from the data and logistical challenges.  In all four years, crews flew transects 

east from the coastline, spaced every 5’ of latitude.  Additional transects were placed over shoal areas 

thought to be important wintering locations, as well as within bays and sounds.  

In this report, we present a model to estimate sea duck abundance, and the results of an analysis 

to identify survey strata based on observed densities, for five species of sea ducks: common eider 

Somateria mollissima, long-tailed duck Clangula hyemalis, white-winged Melanitta fusca, surf M. 

perspicillata, and black scoter M. americana.  We include abundance and precision estimates under (1) 

the current systematic survey design and effort, (2) increased and decreased effort, and (3) several 

simulated reallocations of survey effort, based on the survey strata.  We discuss future analyses and data 

collection that could reduce uncertainty and increase survey efficiency.  Appendix 1 includes a detailed 

description of sea duck distributions, and a preliminary analysis of coastal characteristics associated with 

sea duck presence.  Appendix 2 outlines modeling work that contributed to the development of the 

abundance models. 
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1.3 Abundance estimation 

In fourteen of fifteen cases (five species, three years), the annual abundance estimates fall within two 

standard errors of the three-year mean abundance (Table 1).  The coefficients of variation (CV) on single 

year estimates average 0.19 to 0.30, and the CVs for the three-year mean estimates range from 0.11 to 

0.30.  Under the current design, white-winged scoter estimates are the most imprecise, followed by black 

scoter and common eider.  White-winged scoter abundance is low, making efficient estimation 

challenging; black scoter has the widest and most variable range, and common eider is the most highly 

(and variably) aggregated.  Estimates were the least variable for long-tailed duck and surf scoter, the 

species that winter within the central portion of the survey’s latitudinal range.   

Effort and stratification analyses suggest that we can achieve improvements in the efficiency of 

our estimates by modifying the survey design to sample more heavily in high density areas and by 

increasing the current effort. (Table 1 includes estimated CVs for stratification based on combined species 

densities, assuming the effort available in 2008-10.)  Improving precision will also likely be achieved by 

(1) refining methods of data collection and introducing corrections for observation condition, observer, 

and count bias, (2) shortening transects that currently extend outside sea duck ranges and reallocating 

effort to high density areas, and (3) collecting additional data to refine the model assumptions, the 

characterization of flock size distributions, and our understanding of annual variation.  Ultimately, 

specific survey objectives must be articulated, since optimal survey design will depend on the focal 

species, and the spatial and temporal scale of interest.   

Table 1. Estimated total observable birds in the survey area by species and year, and the three-year mean (SE), 
for 2009-11; average annual coefficient of variation for survey as flown and for stratification assuming 5 crews.  
  Common 

eider 
Long‐tailed 

duck 
White‐
winged 
scoter 

Surf scoter  Black scoter 

2009 estimate  234,100  242,400  44,100  151,200  142,900 

2010 estimate  299,600  253,800  55,200  118,300  380,700 

2011 estimate  220,400  213,400  76,500  178,100  110,400 

3‐yr mean estimate (SE) 
251,400 
(43,400) 

236,600 
(25,700) 

58,600  
(11,100) 

149,200 
(17,100) 

211,300 
(63,800) 

Average annual CV  0.29  0.19  0.33  0.19  0.30 

Average annual CV, stratified design   0.22  0.14  0.23  0.15  0.27 

 

1.4 Questions to consider for survey evaluation and to guide additional analyses. 

What management/research objectives should this survey inform (e.g., harvest regulation, offshore 
development planning, focused research on sea duck-habitat associations)? 

What priority species and areas need abundance estimates?  At what temporal interval? 
What distributional data are needed? At what temporal and spatial scales? 

What information is missing?   
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2.  Introduction 

Concerns about the status of North American sea duck populations, and the lack of information about the 

species’ ecology, habits, and distribution, led to the establishment of the Sea Duck Joint Venture (SDJV) 

in 1999.  The SDJV quickly identified the need for monitoring programs targeted at sea ducks:  

established waterfowl surveys do not cover sea duck habitats, so population trends, critical areas, and 

potential threats are not well characterized (SDJV Prospectus, available at seaduckjv.org).     

The SDJV convened the Sea Duck Monitoring Working Group in 2005, and the group included a 

winter sea duck survey off the Atlantic coast of the United States and Canada in a list of high priority 

surveys (Sea Duck Joint Venture 2007).  Information on winter distributions will support the assessment 

of threats to sea ducks from hunting, coastal development, and marine activities.  Winter abundance 

estimates may also provide cost-effective indices of population sizes.  Previous efforts to monitor sea 

ducks along the eastern seaboard did not extend to offshore areas, provide estimates of precision, or cover 

the entire coast: the Atlantic Flyway Sea Duck survey, an aerial survey conducted from 1991 to 2002, 

consisted of a single track flown parallel to the coast, one-quarter mile offshore; later survey efforts were 

located only around the Chesapeake and Delaware Bays in the mid-Atlantic region.  These efforts led the 

U.S. Fish & Wildlife Service (USFWS) to propose exploratory survey work aimed at developing an 

operational coast-wide winter sea duck survey.   

In this report, we summarize data from the resulting surveys, conducted during the winters of 

2008-11.  The goal of the prerequisite surveys has been to design an operational survey to estimate 

population sizes of wintering sea ducks, assess yearly variation and trends in distribution and abundance, 

and determine habitat associations and areas of special significance.  We focus the current analysis on 

survey design and modeling approaches for the estimation of winter abundance and associated 

measurement of precision.   We present results for the five abundant species of primary conservation 

concern:  American common eider Somateria mollissima, long-tailed duck Clangula hyemalis, and black 

Melanitta americana, surf M. perspicillata, and white-winged scoter M. fusca.  (All species of sea ducks 

were surveyed, but for this report “all sea ducks” refers only to these five species.)  Additional analytical 

work is reported in the appendices:  Appendix1 describes the distribution of each species, interannual 

variation in distribution, and preliminary assessment of the relationship between occurrence, distance 

offshore, and bathymetry; Appendix 2 (Zipkin et al. In press) presents the statistical work that provides 

the analytical framework for abundance modeling.  Analyses that quantify detection probabilities, the 

effect of observation conditions, and the magnitude of observer effects, all of which will likely result in 

modified abundance estimates, will be presented in a subsequent report.  
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3.  Methods 

3.1  Survey description 

The surveys were conducted along the Atlantic coast from the U.S.-Canadian border (44o46’ N) to Palm 

Beach, FL (26o56’ N) between January and March, 2008-11.  Survey crews, consisting of an observer and 

pilot-observer, flew fixed-wing aircraft at 110 knots and 70 m altitude.  Each observer counted all sea 

ducks from the closest observable distance to the center line (~50 m) to 200 m on his side of the aircraft.  

Survey range and design, as well as the number of crews and their assignments, changed between the four 

years, based on lessons learned, logistics, and resources.  Appendix 1 provides a description of the survey 

design and the annual changes.  In 2008-10, there were five survey crews, but only four surveyed the 

primary east-west transects (three in 2008); in 2011, there were four crews, all flying east-west transects.  

In 2012, additional data were collected off the South Carolina and Georgia coasts, and around the mouth 

of the Chesapeake Bay.  These data will be summarized in a subsequent report.   

In this report, we analyze data from 2009-11 from the four primary survey crews.  These crews 

flew east-west transects spaced systematically at intervals of five minutes of latitude (approximately 5 

NM apart).  Transects extended east from the coastline to the longer of two distances: 8 NM or the 

distance to 16 m depth.  Transects ranged in length from one to 79 NM (average transect length was 16 

NM with a standard deviation of 11 NM), as transects that span bays may be less than 8 NM, and longer 

transects parallel the shoreline in complicated coastal areas, such as Long Island Sound.  After completing 

their entire set of transect lines, each crew flew north to their first east-west transect line and replicated 

every other transect from north to south.  The replicate surveys were conducted approximately one week 

after the first surveys and do not duplicate the original track exactly, making the possibility of recounting 

the same individuals unlikely.  Replicates were flown to compare spatial and temporal count variability 

and assess if distributions shifted over the survey period. 

Due to the vagaries of field operations, transects and replicates differed somewhat between years. 

We use data from 253 unique transects (249 in 2009 and 252 in both 2010 and 2011) and 151 unique 

replicated transects (111 in 2009-10, 120 in 2011).  Common eider and long-tailed duck models were fit 

only to the portions of the survey area in which they were found (93 transects and 44-46 replicates per 

year for common eider and 188-191 transects and 86-91 replicates per year for long-tailed duck).  White-

winged and surf scoter also do not winter south to the Georgia-Florida border, but species-specific scoter 

abundance was estimated using a two-stage procedure (described below) and, because this model includes 

black scoter, utilized the entire set of transects.   

The data consist of observations along survey transects recording the (1) location, (2) species, and 

(3) number of birds seen at the location.   The three scoter species can be difficult to distinguish reliably 

in the field, leading to a large number of scoters identified only to genus (Melanitta spp.). 
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3.2  Analysis 

3.2.1  Identification of regions of high use 

We analyzed sea duck densities along the survey transects to delineate coastal regions that differentiate 

sea duck use and abundance, and to define strata for more efficient estimation.   We applied a spatially 

constrained clustering algorithm to the log-transformed three-year average transect densities of each 

species (averages were weighted by area flown, see Appendix 1).  A description of the algorithm, 

available in ArcGIS 10.1, and our application can be found in Appendix 1.  To identify survey strata, we 

applied a multivariate version of the algorithm, and standardized the densities of each species (subtracting 

the mean and dividing by the standard deviation), so that the clustering weighted all species equally and 

did not favor the most abundant species.  For this analysis and subsequent abundance estimates, we set 

the eastern range limit for all transects (except transects along Nantucket Shoals) to 15 NM from the 

coast, because no sea ducks were ever detected farther from the coastline: densities on long transects in 

shallow areas will be underestimated with the inclusion of survey miles well past the eastern boundary of 

the birds’ ranges.  

Our procedure for defining strata had four steps.  First, we divided the coast into three areas, 

based on the southern range boundaries of (1) common eider and white-winged scoter, and (2) long-tailed 

duck and surf scoter.  If the clustering algorithm is run on the full set of transects, using data for all five 

species, then the cluster breaks are dominated by the range edges (since they separate positive densities 

from zero values).  The range break for the northern area, i.e., the southern boundary for common eider 

and white-winged scoter, was 40o26’N; the area north of this latitude included 99.96% of all common 

eider observed and 96.36% of all white-winged scoter (small numbers of white-winged scoter are 

sometimes seen with larger surf or black scoter flocks far south of their typical wintering range). The 

range break for the mid-coast, i.e., the southern boundary for long-tailed duck and surf scoter, was 

35o06’N; the area north of this latitude included 99.97% of all long-tailed duck and 99.95% of all surf 

scoter.  Second, we ran the multivariate clustering separately for the three areas, using densities from all 

five species in the northern area, three species in the mid-coast area (long-tailed duck, surf and black 

scoter), and using only black scoter in the southern area.  Third, we compared the resulting breaks, along 

with the two pre-defined range boundaries, with the major cluster breaks calculated for each species (see 

Appendix 1, Fig A1.2-3, for these areas), identifying consistent breaks as stratum boundaries.  And, 

fourth, we made minor changes to a few transects’ cluster assignments to ensure spatially compact, 

logistically feasible survey strata.     
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3.2.2  Abundance model fitting 

For the annual Waterfowl Breeding Population and Habitat survey, estimates of breeding waterfowl 

populations in the mid-continent of North America are calculated using a “design-based” model. (The 

survey is conducted jointly by the USFWS and the Canadian Wildlife Service, see USFWS 2012 for 

description and methods.)  This approach assumes that transect counts are fixed, and, as a result, the 

underlying count distribution does not affect the estimated standard error (except through the magnitude 

of the count variance).  Wintering sea ducks, however, unlike breeding birds, are not tied to a specific 

location, and constantly move in and out of the surveyed transect areas.  In such a dynamic system, the 

particular shape of the highly right-skewed count distribution has a critical effect on the variance of the 

estimates, and needs to be considered in estimation of abundance and precision.  Therefore, we have used 

a “model-based” procedure to estimate sea duck abundance.  This approach requires that we make explicit 

assumptions about the observed count distributions, but also provides a flexible way to include the effect 

of covariates and to estimate annual and regional abundance by borrowing information from all the 

available data. 

We derived a model to estimate sea duck abundance by considering the two components of the 

observation process:  (1) an observer sees and identifies a group of birds, and (2) the observer estimates 

the number of birds in the group. This process is described mathematically as a marked point-process, 

where the groups represent the points and the group size is the mark.  In this report, we identify the 

individual records in the data, or points, as “flocks” and the count associated with the record, or mark, as 

the “flock size,” where the counts are restricted to the area within the transect boundary (i.e., our flocks 

and flock sizes are functions of the survey protocol and observer counting technique, not biological 

processes alone). 

Appendix 2 (Zipkin et al., In Press) describes exploration of the best fitting marked point model 

to our data.  We determined that the point process, i.e, the total number of flocks per transect, was best fit 

by the negative binomial distribution and the mark process was best described by a discretized log-normal 

distribution; these results held for all species and all years.  But, while the discretized log-normal was the 

clear best choice among the distributions fit to the flock size data, it underestimated the mean flock size, 

because the empirical flock size distributions have a heavier right-tail than the log-normal.   Further 

research is needed to identify a better fitting distribution or determine if the data will fit this distribution 

when factors such as bird density (i.e., regional differences in bird abundance, which affect flock size), 

locational covariates, observer effects, or annual changes in social behavior are considered. 

We used the model fitting results in Appendix 2 to guide specification of a sea duck abundance 

model.  We model flock counts for each species using a negative binomial distribution with the mean of 

the distribution including region×year effects.  Because of the lack-of-fit of the discretized log-normal in 



7 
 

the right-tail, and the absence of an alternative distribution, we used a non-parametric bootstrap procedure 

(resampling flock sizes from our data) to characterize the flock size distribution, estimate flock sizes, and 

determine estimator standard errors.   

We made two refinements to the basic model.  For common eider and long-tailed duck, we 

included a zero-inflation term in the flock count model (i.e., fit the flock counts to a zero-inflated negative 

binomial model).  The zero-inflation component allows our models to estimate the coastal range and 

location of suitable/unsuitable habitat as a function of two covariates, latitude and transect area (see, e.g., 

Zipkin et al. 2010), with the zero probability a quadratic function of latitude.  The zero-component 

quantifies the probability that the species is present by latitude, adjusted for transect area, and, since year 

effects were not included, represents the average area for 2009-11.  For eider, the fit of the zero-inflated 

model ranked higher than the simple negative binomial (Appendix 2).  For long-tailed duck, an absence of 

the zero-component leads to underestimated abundance (as assessed by comparing observed and model-

predicted counts), because there is a sharp drop in long-tailed duck abundance between southern and 

central Cape Cod (Fig A1.2C, Fig A1.5A), and this drop falls within one of our survey strata (inclusion of 

these transects in the stratum without the zero component reduces the stratum’s mean flock count, so that 

estimated counts along the majority of the stratum’s transects are too low). 

We also modified our approach to estimate black, surf, and white-winged scoter abundance.  A 

large proportion of scoters are not identified to species, and this proportion varies by region and year (due 

to observer experience, observation conditions, and scoter species composition).  Thus, if unidentified 

scoters are not included in species-specific estimation procedures, we are likely to see large changes in 

scoter species estimates, due only to changes in identification.   To estimate black, surf, and white-winged 

scoter abundance, we fit a hierarchical model with the following components:  (1) the total scoter flock 

counts, N, are modeled with the negative binomial distribution, including region×year effects; (2) the 

number of identified black, surf, and white-winged scoter flocks and unidentified scoter flocks within 

each region-year are modeled by the multinomial distribution with parameters (݌௕ߨ, ,ߨ௦݌ ,ߨ௪݌ 1 െ  ,(ߨ

conditional on N, where ߨ is the proportion of scoter flocks that were identified to species for a given 

region-year, and (݌௕, ,௦݌  ;௪) are the proportion of black, surf, and white-winged scoters in the region݌

and, (3) the flock sizes for each species are then estimated using a non-parametric bootstrap procedure 

selecting from the species, year, and region specific observed flock sizes.   We did not include a zero-

component in the combined scoter flock count model, because these species are found at variable 

abundance all along the coast and generic presence/absence is not a simple function of latitude.   

Finally, we have treated replicate counts as new observations in these models.  We made the 

assumption that replicate counts are independent of the original count because it is likely that the birds 

counted in the first replicate have moved outside of the transect area in the interval between replicates, 
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and because the plane is unlikely to fly the exact same track on the replicate.  Positive correlation of 

replicate counts still result, because they occur close to the same location and are therefore being affected 

by the same covariates (we include latitude, region, year, and transect length in our modeling).  We 

checked the effect of this assumption by exploring correlations among replicate counts and running the 

models for the first-replicate data only, and found no resulting bias and minimal changes to the estimates.  

 
3.2.3  Estimation and bootstrapping 

The complexity of the scoter flock count model required a modeling framework with the flexibility to 

build a specific hierarchical model and the OpenBUGS program for Bayesian analysis (Lunn et al. 2009) 

was therefore used to fit the scoter flock count model. For consistency, models for common eider and 

long-tailed duck were also fit using OpenBUGS. OpenBUGS uses Markov chain Monte Carlo (MCMC) 

simulation to estimate parameter values. We ran three chains with unique starting values for each model 

for 250,000 iterations after convergence, keeping one of every 250 values in order to remove evidence of 

autocorrelation between sampled values; this process resulted in 1,000 estimates of the parameter values 

for each chain. 

To obtain flock count estimates and standard errors, we used the median value of each parameter 

estimate, along with our model covariates and indicator variables for region-year, to simulate 1,000 

realizations of the species-specific flock counts on every transect within each region-year combination.  

Next, we selected flock sizes for the 1,000 simulated flock count datasets with a non-parametric bootstrap 

of our observed flock size data (subset by region-year).  The sum of these flock sizes by region and year 

is an estimate of the total ducks present along the surveyed transects; the mean of these 1,000 bootstrap 

estimates is our final estimate for the total number of sea ducks for each species within the survey area 

and its estimated standard error is the standard deviation of the 1,000 bootstrap estimates.  The total 

estimated number of ducks in each region and its standard error were calculated using the bootstrap totals 

multiplied by an expansion factor equal to the total area of the region, divided by the surveyed area.  (See 

Fig 1, which illustrates the estimation and bootstrapping steps.) 

To investigate the impact of survey effort on the precision of our estimates, we applied the 

bootstrapping procedure described above to a range of survey efforts, estimating total birds, the standard 

error, and the coefficient of variation for each year and species at five additional effort levels.  The 2009-

11 effort entailed surveying all transects once, and half a second time (effort=1.5).  We estimated 

precision, measured by the annual average coefficient of variation, assuming effort of ½, ¾, 1, 2, and 3, 

corresponding to half the lines surveyed once, three-quarters surveyed once, all surveyed once only, all 

surveyed twice, and all surveyed three times, respectively.  Note that, because replicates are treated as 

independent observations, this procedure is equivalent to adding new transect lines.  Re-selecting current 
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transects simplifies the simulations, because transect area is needed for every new line, and the existing 

areas provide a representative sample for each survey strata. 

 
Figure 1:  Flowchart illustrating the steps in the estimation and bootstrapping procedure. 

 
3.2.4  Stratification 

The 2009-11 survey design consisted of systemically sampling transects spaced at roughly five nautical 

miles and replicating every second transect line. However, observed sea duck densities varied 

considerably by species and region. With a goal of improving the current survey design, we tested six 

different possible stratification scenarios. In each case, the total surveyed area (effort) was held constant, 

but the surveyed effort from transects replicated in low density regions was reapplied to regions of high 

density. These stratification scenarios allowed us to estimate the change in survey precision under 

different hypothetical survey designs.  

We designed one stratification scenario for each individual species; a hypothetical survey design 

that would target the regions of high density specific to that species. Our sixth stratification design was 

based on overall sea duck densities for the five species of interest. This “five-species” stratification 

represents a more informed (i.e., more efficient) hypothetical survey for all target species, designed to 
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concentrate survey effort on regions of overall high density with a goal of obtaining more precise 

abundance estimates.    

Lastly, we investigated the effect of assigning the full five-crew effort that was available in 2009 

and 2010 to the five-species stratification scenario. With the additional survey area provided by a fifth 

crew, we were able to simulate replicating all transects within the four high density regions (see below: 

strata 2, 4, 5, and 8), while adding a set of lines between the existing transects in stratum 2 and several 

lines in stratum 8 (added mileage varied slightly by year).  Again, we applied the bootstrapping procedure 

above to estimate total birds, standard error, and coefficient of variation. 

 
3.2.5  Power calculation 

A decrease in wintering sea duck populations can result from a drop in the number of flocks, a drop in the 

sizes of the flocks, or, most likely, some combination of both.  For example, large flocks might initially 

be unaffected by population declines, but decreasing population size would inevitably decrease their size; 

similarly, declining flock sizes will eventually result in fewer flocks.  Power calculations necessarily 

depend on how both components of the abundance model are affected by changes in population size, and 

this is currently unknown.  In particular, we do not know how the shape of the flock size distribution 

changes with changing population size and, because we are bootstrapping to estimate flock sizes, instead 

of making an assumption about the form of the flock size distribution, we have no flock size parameters 

to adjust.  Given these limitations, we explored the survey’s power to detect winter population declines 

for two cases: (1) decreases in the number, but not the size, of flocks, and alternatively, (2) decreases in 

the size, but not the number, of flocks.  We calculated power for common eider, the species with the most 

variable abundance estimates, and long-tailed duck, the species with the least variable estimates, using the 

average parameter values for 2009-11 and assuming five-crew effort assigned according to the five-

species stratification scenario. 

To simulate changes in the number of flocks, we added a parameter representing proportional 

annual decline, No. of flocks >0, to the model, multiplying the mean of the negative binomial count 

component by (1-No. of flocks)
t, where t is the number of years the population has declined. To simulate 

changes to flock sizes, we decreased the size of all flocks used for the bootstrapping by multiplying by (1-

 Flock size)
t.  When the percentage drop resulted in a non-integer flock size, we truncated the flock size and 

added the decimal value to the next smallest flock size, repeating the process until we reached the 

smallest flock size, when the decimal was dropped.  This process shifts the flock size distribution to 

smaller values and ensures that a 100·% drop in flock size corresponded to a 100·%  drop in the total 

number of birds counted in all flocks: if flock sizes are instead rounded, then for small to moderate 
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percent declines, smaller flocks will not decrease in size at every time step and the average flock size 

decline is less than stated.       

Before running the power calculations, we explored the effect of a decrease in the number of 

flocks versus a decrease in the size of flocks on the total number of birds.  We ran 1,000 bootstrapped 

estimates of total birds for t = 0 (as described in section 3.2.3), followed by 1,000 bootstrapped estimates 

for t = 1, using No. of flocks and Flock size  each selected from a uniform distribution between 0 and 0.2. We 

calculated the drop in the estimated total number of ducks (Total birds) for the 1,000 pairs and fit a zero-

intercept linear model to these values with decrease in number of flocks (No. of flocks), decrease in flock 

size (Flock size), and their interaction as explanatory variables to estimate the relationship between a 

decrease in number and/or size of flocks and the resulting decrease in total birds. Using the resulting 

parameter estimates, we calculated the mean percent decrease in total bird count for all combinations of 

decreases of 0, 1, 2, 5, 10, and 15% in the number and size of flocks.  

We calculated the survey’s power to detect population declines for annual decreases of 1, 2, 5, 

10,and 15%  in (1) the number of flocks and (2) the size of flocks by simulating 1,000 31-year time series 

of total birds for both scenarios using the 2009-11 average estimated parameter values for common eider 

and long-tailed duck.  For each type of decline, time interval (2-30), and simulation, we fit a log-linear 

regression model to estimate the rate of population decline, Total birds (abundance N(t) = No(1-Total birds)
t in 

our formulation).  This resulted in 1,000 estimated rates of decline, log(1- Total birds), and associated 

confidence intervals for  = 0.05 and 0.1, for each type of decline and time interval; the proportion of the 

1,000 confidence intervals that fell entirely below zero is our estimate of the power to detect Total birds > 0.  

For the case of decreasing flock counts, we also calculated the power to detect positive values of the 

parameter No. of flocks, by fitting the simulated flock counts to the zero-inflated negative binomial model 

for each time interval and estimating the associated confidence intervals. 

  

4.  Results 

4.1 Identification of survey strata 

Using the clustering algorithm and four-step process described in section 3.2.1, we identified ten coastal 

regions that differed in individual and total sea duck density (Fig 2).  Appendix 1 includes details for the 

species-specific regions and annual differences.   The range break for the northern species occurs at the 

boundary of strata 2 and 3; this is also a cluster break for long-tailed ducks.  The range break for the mid-

coast species occurs between strata 6 and 7 and is a cluster break for black scoter. The high-density strata 

that received extra effort at the expense of replication in the low-density strata are illustrated in Table 2.   
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Table 2:  Six stratification scenarios.  The stratification scenarios are represented by columns, and the column 
heading indicates the species targeted by the stratification effort.  Shading indicates the high-density strata that 
received additional effort, with all low-density replicates reallocated to previously un-replicated transects in high 
density areas.  Pluses indicate strata that received additional effort beyond that needed to replicate all transects; 
Minuses indicate strata that received additional effort that was insufficient to replicate all transects.  The 5-species, 
5-crew stratification sampled additional transects in the four strata shaded in the right-most column, with no strata 
receiving insufficient added effort (minus sign) and strata 2 and 8 receiving additional effort (plus sign).  

    Stratum 
Common 
eider 

Long‐tailed 
duck 

White‐
winged 
scoter  Surf scoter  Black scoter 5‐species 

1  Maine & New England 

2  Cape Cod & Long Island Sound  +  +  +  — 

3  New Jersey coast   

4  Delaware Bay & DE/MD coast    +  — 

5  Chesapeake Bay  — 

6  Virginia coast & Pamlico Sound  + 

7  S. North Carolina coast 

8  Central South Carolina coast  + 
9  S. South Carolina/N. GA coast 

10  S. Georgia coast 
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Figure 2:  Ten sea duck strata identified by clustering analysis, color coded from high (red) to low (dark 
green) in total sea duck density.  Numbers are the annual mean (SD) density for the neighboring region 
(birds/NM2). Note that two strata in the mid-Atlantic have similar overall sea duck densities.  The *ed 
central South Carolina region’s high value is due to one especially large count.  The region’s density 
without this count is 20.8 (26.2).  Black scoter regions in the south were identified with this value 
excluded. 
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4.2 Abundance estimation 

Table 3 reports the total birds estimated in the survey area by year and species, along with the three-year 

average.  Table 4 includes the three-year averages for the ten regions.  Note that the current methods and 

model do not account for detection, count bias, or observer effects.  These numbers should be interpreted 

as the total number of ducks that crews would have counted, if they had surveyed all ten regions in their 

entirety, and should not be considered winter population estimates.  Further analyses of the data to 

quantify observation effects are needed to build models that predict actual wintering population sizes. 

Table 3: Estimated total observable birds in the survey area, estimated standard error, and coefficient of 
variation by species and year, along with the three-year mean values.     

      2009  2010  2011  3‐year mean 

Common eider 

Estimated total birds  234,106  299,624  220,383  251,371 

Est. standard error  72,492  91,907  58,973  43,394 

Coefficient of variation  0.31  0.31  0.27  0.17 

Long‐tailed duck 

Estimated total birds  242,419  253,817  213,421  236,552 

Est. standard error  49,387  48,200  39,565  25,700 

Coefficient of variation  0.20  0.19  0.19  0.11 

White‐winged scoter 

Estimated total birds  44,076  55,183  76,525  58,595 

Est. standard error  14,617  19,825  22,191  11,069 

Coefficient of variation  0.33  0.36  0.29  0.19 

Surf Scoter 

Estimated total birds  151,158  118,346  178,105  149,203 

Est. standard error  27,226  21,543  37,547  17,149 

Coefficient of variation  0.18  0.18  0.21  0.11 

Black scoter 

Estimated total birds  142,902  380,695* 110,390  211,329 

Est. standard error  26,178  187,167  26,040  63,778 

Coefficient of variation  0.18  0.49  0.24  0.30 

Scoter spp. 

Estimated total birds  336,444  581,505  370,273  429,407 

Est. standard error  50,701  193,883  66,261  70,950 

Coefficient of variation  0.15  0.33  0.18  0.17 
*The 2010 black scoter estimate calculated excluding the large replicate value at 32o41’ is 138,247 (37,924) with a 
CV of 0.27.  The resulting 3-year mean is 130,796 (16,971) with a CV of 0.13. 

The annual estimates are all within two standard errors of the three-year mean, with the exception 

of the estimate for black scoter in 2010.  The black scoter estimate is due to a few unusually large counts 

off the southern coast; this is reflected in the high standard error for black scoter in 2010.  Estimates are 

the least variable for the long-tailed duck and surf scoter.  Common eider, long-tailed duck, and black 

scoter estimates are highest in 2010 and lowest in 2011; white-winged and surf scoter estimates are 

highest in 2011 and lowest in 2009 and 2010, respectively.     
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The model estimates correspond well to the raw observed counts (data not shown): these counts, 

expanded by region to the total survey area for each species and year, are all well within one standard 

error of the model estimated total birds, as are the 3-year means for the expanded raw counts (231, 245, 

and 457 thousand, for common eider, long-tailed duck, and scoter spp., respectively).  The model over-

predicts slightly relative to the raw counts for common eider in all three years, and under predicts total 

scoters.  These patterns may result from an interaction between the zero-inflation term (or lack thereof) 

and the stratum boundaries, as highlighted in the case of the long-tailed duck estimates.  Further 

investigation is needed to develop the best stratification approach (e.g., post-stratifying by species) and 

form of the zero-inflation term, so as to minimize these effects.   

Table 4: Estimated three-year mean abundance (estimated SE) in thousands, by survey region and species. 
0.00 values indicate estimates in the single digits. 

      Common eider
Long‐tailed 

duck 
White‐winged 

scoter  Surf scoter  Black scoter  Scoter spp. 

   All Regions  251.4 (43.4)  236.6 (25.7)  58.6 (11.1)  149.2 (17.1)  211.3 (63.8)  429.4 (70.9)

1 Maine & New England  45.5 (6.3)  11.9 (2.9)  1.7 (1.0)  2.2 (0.5)  0.5 (0.2)  4.7 (1.3) 

2  Cape Cod & Long Island Sound  205.8 (43.3)  194.6 (25.2)  55.2 (11.0)  66.0 (11.8)  32.6 (8.3)  155.4 (25.7)

3 New Jersey coast    2.7 (0.9)  0.08 (0.04)  0.1 (0.1)  0.3 (0.1)  1.8 (1.5) 

4  Delaware Bay & DE/MD coast    0.8 (0.2)  0.7 (0.3)  47.7 (9.0)  34.0 (6.2)  84.6 (14.8) 

5  Chesapeake Bay    25.4 (5.8)  0.8 (0.4)  30.3 (8.9)  4.0 (2.4)  37.9 (11.3) 

6  Virginia coast & Pamlico Sound     1.2 (0.5)  0.01 (0.02)  2.8 (1.0)  19.5 (6.5)  23.6 (7.0) 

7  Southern North Carolina coast     0.01 (0.01)  1.8 (0.7)  1.9 (0.8) 

8  Central South Caroline coast     0.1 (0.2)  0.00 (0.01)  113.6 (62.5)* 112.2 (62.0)

9  S. SC coast & N. Georgia coast     0.00 (0.00)  3.2 (1.6)  3.3 (1.6) 

10 southern Georgia coast        0.01 (0.01)   0.01 (0.01)   2.0 (2.4)  3.9 (4.2) 

* Black scoter estimate excluding the large replicate value at 32o41’ in 2010 is 32.8 (12.5). 

Species-specific scoter estimates also sum to slightly less than the total scoter estimate.  This is 

due to the fact that we calculated the species-specific estimates using the observed species-specific flock 

size distributions, while the generic scoter estimates were calculated using all scoter flock sizes.  

Unidentified scoter flock sizes were somewhat larger than identified scoters (mean = 10.5, SD = 27.5 for 

unidentified scoters versus mean = 9.8, SD = 26.9 for identified scoters, omitting southern coast, where 

only black scoter are found) and this suggests that large, mixed flocks are more likely to be recorded as 

generic scoter.  There were more unidentified scoters in 2011 (37% of all scoters seen, as compared to 15 

and 16% for 2009 and 2010, respectively, Table 5).  The increase was due to our decision to reclassify 

one new observer’s scoter observations as generic, because his species composition differed substantially 

from the experienced pilot’s.  In this case, the model uses the regional species composition from the pilot-

observer to estimate species-specific flock counts. 
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Table 5: Proportion of scoters identified by species and year. 
2009  2010  2011 

White‐winged scoter  0.07  0.05  0.17 

Surf scoter  0.31  0.14  0.29 

Black scoter  0.47  0.65  0.17 

Total identified  0.85  0.84  0.63 

The abundance model first estimates the number of flocks per transect, and then assigns each a 

size by sampling from the distribution of observed flock sizes.  Figure 3 presents the distribution of flocks 

per transect by species and year for transects with flocks present (log-scale), along with the total number 

of flocks estimated for each year by the model, and the coefficient of variation of the estimate.   The 

observed and model-estimated number of transects with no flocks, for each survey year and species, are 

close (the average percent difference in number of transects with no flocks, all species and years is 2.0%). 

Total scoter flock counts are consistent between years and more skewed than eider or long-tailed 

duck counts, indicating many transects with few flocks and a few transects with many flocks.  Since the 

scoter counts represent the sum of three species, one might expect the combined distribution to be less 

skewed than those for single species, if the species were distributed independently among transects.  The 

higher skew would suggest the three species tend to concentrate in the same areas.  The increased 

abundance of white-winged scoter in 2011 was due to more, larger flocks, and the high count of black 

scoter in 2010 was due to a few very large counts (Fig 3 and Fig 4, which plots the distribution of flock 

sizes by year and species). 
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Figure 3:  Flock count distributions by year and species (COEI = common eider, LTDU = long-
tailed duck, and SCOT = scoter spp.).   Scoter species are combined, because single species 
distributions are affected by the number of unidentified scoter flocks on each transect.  The model 
assigns scoter-species to estimated flocks based on the proportion of each species’ flocks in the 
region.  Numbers below the boxplots are (1) the estimated number of flocks by year and species, 
based on the negative binomial model with zero-inflation (eider and long-tailed duck), region×year 
effects, and a transect area offset, and (2) the coefficient of variation of these estimates.  
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Figure 4:  Boxplots of log[flock size] by year and species (WWSC = white-winged scoter, SUSC = surf 
scoter, BLSC = black scoter).  Scoter species boxplots represent the distributions of flock sizes, for flocks 
identified to species.  The numbers on the x-axis are the total number of flocks observed in each year, and 
below these are the variance to mean ration of the observed log[flock size] distribution. 

The total number of eider flocks surveyed each year varied the most, as does our confidence in 

the flock count estimate (as measured by the CV, Fig 3).   Transect flock counts for eider, however, are 

less skewed, as might be expected given their more concentrated range: Figure 5 illustrates the probability 

of transect occupancy as a function of latitude for eider and long-tailed duck.  The eider range has a sharp 

boundary, although a few eiders are regularly counted south of the sharp drop (see also Table 4).     
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Figure 5:  Estimated probability of presence by latitude for a transect of average area. Solid curves are 
the model estimated medians; the dashed lines encompass the 90% credible interval.  

Long-tailed duck flock counts and flock sizes are less variable both within and between years, 

and our estimates of their abundances are correspondingly more precise (Figs 3-4, Table 3).  The larger 

long-tailed duck estimate in 2010 was due to fewer, somewhat larger flock counts (Fig 3-4).  Estimation 

of long-tailed duck probability of occurrence is dominated by the northern and eastern transects in stratum 

2 (i.e., Cape Cod, Fig 5), which represent a sharp drop in long-tail abundance from the southern Cape.  

This result is due to the fact that we set the stratum boundary just north of Cape Cod, because this was 

identified as a stratum break for white-winged scoter and because it would result in a more “logical” 

stratum for survey crews and data management.   

The flock size distributions for common eider and long-tailed duck are similar between species 

and years, but the differences are sufficient to impact the annual estimates.  Scoter distributions are more 

variable, which, for white-winged and surf scoter in particular, may reflect variations among observers in 

species identification.  Black scoter distributions are affected particularly by flock sizes along the 

southern coast, where they are not confused with the other two species.  Their spatial distribution and 

patterns of aggregation over the four survey years have been highly variable (see Appendix 1), and this is 

reflected in the lower precision of the black scoter estimates. 

 
4.3 Effect of effort and stratification on the precision of estimates 

Under current survey effort, the annual species-specific coefficients of variation range from 0.18 to 0.49, 

and the CVs for the three-year means from 0.11 (long-tailed duck and surf scoter) to 0.30 (black scoter); 

abundance estimates for common eider, white-winged scoter, and black scoter are the most variable 

(Table 3).  Figure 6A plots the average annual CVs, which measure the typical precision of the annual 

estimates, as a function of survey effort.  The effort level in 2009-11 (1.5) is indicated on the plot (these 
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CVs are the averages of the three annual values reported in Table 3 for each species).  The red dashed line 

on the figure indicates the effort value that would have been possible, if the five survey crews deployed in 

2009-10 had all flown east-west transects, and effort that went to transects longer than 15 NM was 

reassigned. 

 

Figure 6:  Average annual coefficient of variation versus (A) survey effort and (B) stratification scenario 
by species.  W = WWSC, B = BLSC, C = COEI, S = SUSC, and L = LTDU.  In 2009-11 survey effort 
was 1.5 (all lines flown once, half flown again).  If the 5th survey crew were to be assigned “regular” 
survey lines, effort would be 2.0, indicated by the red dashed line. Dashed lines in (B) correspond to those 
in (A), and are included for reference, i.e., 1.5 SYS and 2.0 SYS refer to the current systematic scenario 
with survey effort equal to 1.5 and 2.0, respectively; 1.5 Spp Specific refers to the individual species 
stratification at 1.5 effort; 1.5 5 Spp refers to the five-species stratification at 1.5 effort; and, 2.0 5 Spp 
refers to the five-species stratification with five crews. Note the different y-axis scales in A and B. 

Table 6 and Figure 6B summarize the results of the stratification simulation on the precision of 

the annual total and regional estimates.  The consequences of the species-specific stratifications are 

included only for the species itself, as a measure of the largest improvement likely under stratification 

with current effort.  The five-species stratification under current effort (1.5 in Fig 6B) and five-crew effort 

(2.0 in Fig 6B) are also included.    
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Table 6:  Average annual coefficients of variation for the current survey design and effort (SYStematic), the five species-specific stratifications (COEI, 
LTDU, WWSC, SUSC, and BLSC STRATA), the five-species omnibus stratification (5 Spp STRATA) and the five-species stratification assuming five 
crews at current effort (5 Spp STRATA, 5 Crews).  Shaded regions (Cape Code/Long Island, DE Bay, DE/MD coast, Chesapeake Bay, and Central SC 
coast) are the high density five-species strata.  Shading under the species headings indicates high density strata by species.  Red outlines denote the strata 
receiving additional effort under each scenario, dashed red outline indicate added effort that is insufficient to replicate all lines in the stratum (the two mid-
Atlantic strata in the five-species case and the Cape Cod/Long Island stratum in the SUSC-specific stratification). 

   Common eider        Long‐tailed duck     White‐winged scoter     Surf scoter        Black scoter       

   SYS 
COEI 

STRATA 
5 Spp 
STRATA 

5 Spp 
STRATA, 
5 Crews  SYS

LTDU 
STRATA

5 Spp 
STRATA

5 Spp 
STRATA, 
5 Crews SYS 

WWSC 
STRATA

5 Spp 
STRATA

5 Spp 
STRATA, 
5 Crews  SYS 

SUSC 
STRATA

5 Spp 
STRATA

5 Spp 
STRATA, 
5 Crews SYS 

BLSC 
STRATA

5 Spp 
STRATA

5 Spp 
STRATA, 
5 Crews

Total area  0.29  0.26  0.27  0.22  0.19 0.16  0.17  0.14  0.33 0.26  0.28  0.23  0.19 0.17  0.19  0.15  0.30 0.26  0.28  0.27 

Maine/New England  0.24  0.20  0.28  0.29  0.35 0.41  0.42  0.42  0.57 0.70  0.70  0.70  0.40 0.50  0.50  0.52  0.50 0.59  0.58  0.59 

Cape Cod/Long Isl.  0.36  0.32  0.32  0.26  0.23 0.18  0.19  0.16  0.35 0.27  0.30  0.24  0.27 0.26  0.24  0.20  0.34 0.41  0.29  0.24 

NJ coast          0.53 0.64  0.63  0.64  0.97 1.15  1.15  1.14  1.06 1.28  1.28  1.28  0.79 0.97  0.95  0.95 

DE Bay, DE/MD coast          0.44 0.55  0.40  0.37  0.73 0.90  0.72  0.62  0.26 0.22  0.26  0.22  0.26 0.20  0.25  0.22 

Chesapeake Bay          0.37 0.30  0.36  0.29  0.73 0.83  0.73  0.60  0.45 0.35  0.44  0.35  0.74 0.87  0.75  0.58 

VA & Pamlico Sound        0.42 0.53  0.52  0.50  1.63 1.92  2.00  2.07  0.52 0.63  0.63  0.64  0.39 0.30  0.47  0.47 

Southern NC coast                      1.48 1.67  1.69  1.68  0.74 0.87  0.88  0.90 

Central SC coast                1.30 1.61  1.17  1.09  1.60 1.91  1.34  1.34  0.52 0.38  0.46  0.43 

s.SC & n. GA coast              2.58 3.19  3.03  3.10  0.68 0.81  0.83  0.81 

Southern GA coast                          1.47 1.52  1.58  1.48  1.38 1.75  1.64  1.62  1.40 1.63  1.60  1.64 
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Stratification improves the precision of the estimates in all cases: an average of two percentage 

points under the current effort, five-species stratification, four points under species-specific stratifications, 

and six points under the five-crew, five-species design (Table 6, Fig 6B).   Improvements in precision for 

the coastwide abundance estimates and for high density regions come at the expense of precision in low 

density strata.   Thus, the common eider estimate in stratum 1 (Maine/New England) and the black scoter 

estimate in stratum 6 (Virginia coast/Pamlico Sound) see CV increases under the five-species 

stratifications, because those strata do not receive extra effort under that stratification.  These effects 

could be mitigated by increasing overall survey effort and applying that effort to species-specific high 

density strata. 

Stratification improves precision most for the white-winged scoter estimates with the species-

specific resulting in a CV drop of seven percentage points: from 0.33 to 0.26.  The highest density white-

winged scoter strata (Cape Cod/Long Island) received extra effort under all stratifications, with the five-

crew, five-species stratification giving the best overall improvement (0.23).  The 11 point improvement in 

stratum 2’s CV, however, comes at the expense of stratum 1, which saw a 13 point increase in its CV.   

Common eider, long-tailed duck, and black scoter have similar precision gains through 

stratification, with eider benefiting most from the five-species, five-crew stratification that concentrates 

survey effort around Cape Cod, and black scoter benefiting most from a species-specific stratification, 

which shifts effort south.  Surf scoter see the smallest gains, as both the five-species, current effort and 

five-crew effort concentrate extra effort in around Cape Cod and South Carolina, and add relatively less 

effort to the mid-Atlantic strata, where surf scoter is most abundant. 

 
4.4 Power 

Power calculations for detecting Total birds > 0 were essentially identical for equivalent decreases in No. of 

flocks and Flock size (results not shown).   The zero-intercept linear model relating Total birds to No. of flocks and 

Flock size supported this result: a decrease in either the number or size of flocks results in the same 

proportional decrease in the total number of birds, while a simultaneous decrease in both number and size 

of flocks results in total birds decreasing by the sum of the two decreases, less their product (which is 

approximately equal to the summed declines, e.g., a one percent decline in both the number and size of 

flocks translates into a 1.99% decline in total number of birds).   The standard error values for the 

parameters in the zero-intercept model are very close to one another in magnitude (within two percent) , 

which suggests that one avenue of decline does not produce more variability in the decline in total birds 

than the other.   

Table 7 summarizes the results of the power analysis.   Power to detect declines is higher for 

long-tailed duck than common eider, requiring, for example, about eight fewer years to detect a two 
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percent annual decline and one less year to detect a fifteen percent decline.  For both species, more than 

25 years are needed to detect annual declines of one percent, and about eleven to fifteen years to detect 

five percent declines.  But, the smaller the annual decline, the larger the population size will be when the 

trend is detected: for example, a two percent annual decline should be detected when the population has 

dropped between 28% (long-tailed duck at 80% power,  = 0.1) and 43% (common eider at 90% power, 

 = 0.05), while a ten percent decline would be detected when the population had dropped 47-65%. 

Power to detect a decline in the number of flocks is substantially higher than a decline in total 

birds.  At 80% power, annual declines in number of common eider flocks will be detected three to eight 

years sooner than equivalent declines in total birds, and declines in long-tailed duck flocks two to seven 

years sooner.  For both species, the time to detect a five percent decline in number of flocks is equivalent 

to the time to detect a ten percent decline in total birds.  Thus, if more than half of the annual decline in 

total wintering population is manifest as a decline in the number of flocks, monitoring the number of 

flocks would provide a more sensitive metric for population trends than estimates of total birds.    

Table 7: The number of years to detect a decline in total abundance (Total birds > 0) and the number of 
flocks (No. of flocks > 0) with 80% power and  = 0.1 or 90% power and  = 0.05 for common eider and 
long-tailed duck.  The calculations for Total birds are based on a yearly decline in the number of flocks (No. 

of flocks).  Results based on a decline in the size of flocks (Flock size) were the same.  Power calculated using 
the average 2009-11 parameter values and assuming the five-crew, five-species stratified effort. 

Yearly decline  Years to ≥50%  Total birds  No. of flocks  

(%)  decline  80% at 0.1  90% at 0.05  80% at 0.1  90% at 0.05 

      Common eider     

1  70  >31  >31  24  28 
2  36  24  29  16  18 
5  15  13  16  9  10 
10  8  9  11  6  7 
15  6  7  9  4  5 

      Long‐tailed duck     

1  70  27  >31  19  23 
2  36  17  21  10  12 
5  15  10  12  7  8 
10  8  7  8  4  5 
15  6  6  7  4  4 

 

5.  Discussion 

5.1 Model performance and next steps for abundance estimation 

Based on our previous analyses (Appendix 2), the close match between observed and estimated counts, 

and the flock count models’ successful prediction of the number of zero-flock transects, we suggest that 
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the abundance model fits the data well and provides reasonable estimates of abundance.  Bootstrapping 

the flock sizes should result in realistic standard error estimates that account for the extreme skew of the 

flock size distributions.   

Because the model is sensitive to the flock size distribution, further data and analyses are needed 

to characterize these distributions and understand the factors that affect the weight of the tail (e.g., the 

relative effect of observer counting strategies versus bird behavior, and the extent to which these factors 

vary by observer, year, or species).  Estimation accuracy and efficiency might also be increased, without 

additional effort or data, by accounting for both observer differences and observation conditions. 

Including local covariates for replicated transects may improve our description of the flock size 

distributions and weight areas with large flock counts appropriately.     

Separating the observation process into the occurrence component (flock count) and the 

measurement component (flock size) allows us to improve our estimates by identifying the separate 

covariates that affect each component, and to adjust the survey protocol and design accordingly.  It may 

ultimately be most efficient to collect the flock count and flock size data independently using different 

protocols (e.g., observers count flocks and cameras determine flock sizes) or to incorporate a double 

counting procedure for a sub-sample of transects (simultaneous counts and photos, or double observers 

with the second observer focused only on estimation of large flocks).  Because the large flock counts have 

a disproportionate effect on the abundance estimate, improvements in detection are unlikely to improve 

survey efficiency relative to improvements in flock size measurement. 

As a result of the impact of a few large flock counts on the 2010 BLSC abundance estimate, and 

the general variability of black scoter along the southern coast, we conducted intensive surveys along 

South Carolina and Georgia in 2011-12, replicating all lines and adding lines at 2.5NM intervals.  We 

plan to analyze these data to better understand scoter distributions in this area, the distribution of flock 

counts and the factors affecting these counts, the relative advantages of increasing spatial coverage versus 

replicating lines, and the survey effort necessary to obtain sound black scoter abundance estimates.  

Further analysis of the factors affecting scoter identification is also necessary: if the probability of 

identifying a scoter to species differs substantially by species, then some of our regional scoter estimates 

could be biased.  The extent of this problem would depend on the magnitude of the differences in 

identification and the underlying species composition in the region.  For the most part, the survey crews 

in 2008-11 consisted of observers with extensive experience with aerial waterfowl surveys and sea ducks, 

which should minimize the effect of inexperience on scoter speciation.  

For highly aggregated count data, such as winter sea duck counts, the excess of zero values 

presents another modeling challenge.  Although the zero-inflation component is an effective means to 

address this problem, (1) the covariates determining the probability of occurrence, (2) the functional form 
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of the relationship between these covariates and occurrence, and (3)  the interaction of the zero-inflation 

formulation  and the stratification (which essentially defines covariate ‘regional indicator’ variables for 

the negative binomial count component of the model), all affect model performance and the quality of the 

resulting estimates.  Further research is needed to understand these interactions and develop methods to 

select appropriate stratum boundaries or adjust for boundaries that are selected based on multi-species or 

logistical considerations.   

 
5.2 Improving precision through survey design changes  

The effort and stratification analyses suggest that we can achieve meaningful improvements in the 

efficiency of our estimates by modifying the survey design to sample more heavily in high density areas 

and by increasing the current effort.  The five-species stratification using five crews (the effort available 

in 2008-10) reduced overall CVs three to ten percentage points and improved the precision of some 

regional estimates substantially.   

Estimates for long-tailed duck and surf scoter, species whose wintering areas fall within the 

central portion of the survey’s latitudinal range, are the most precise. Estimates for these species show 

smaller precision gains under stratification than do estimates for the white-winged scoter and common 

eider, the species with the most variable estimates.  The higher CVs for white-winged scoter and common 

eider are not surprising:  white-winged scoter abundance is low, making efficient estimation challenging, 

and common eider is the most highly (and variably) aggregated of the five species.  Black scoter CVs 

exhibited high inter-annual variability in precision (due to 2010) and small precision gains under the 

stratifications that we explored, which is expected given their wide and variable range.   

As the distributions of the five species vary, so do the solutions to achieving more precise 

estimates.  Estimation of long-tailed duck abundance would likely improve if the Nantucket Shoals 

transects were treated as a unique stratum.  Precise eider estimates require concentrating effort from Long 

Island northward.  In contrast, precise black scoter estimates necessitate more survey effort in the 

southern half of the survey area, likely at the expense of the other four species.   

Power analysis suggests that the survey can detect large changes in abundance in relatively few 

years, and slow changes before overall population declines are large.  Increasing survey precision in 

general or targeting stratification to species of concern (i.e., those likely to have the greatest annual 

declines) would improve the power to detect negative trends.  A better understanding of the flock size 

distribution, and the relative effect of population size changes on number of flocks and flock sizes, would 

further improve the survey’s power to detect trends, as well as our ability to estimate it correctly.  If flock 

numbers decline more rapidly than flock sizes, then trends in the number of flocks may be an effective 

means of monitoring for population trend.  Note, however, that our power analysis is preliminary, and 
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does not include realistic components such as variability in annual declines, which might affect power 

calculations. 

One additional avenue of exploration for optimal design and stratification concerns the effect that 

changes in distributional patterns have on annual abundance estimates.  In 2011, when the white-winged 

scoter estimate is the highest, we also recorded the lowest percentage of white-winged scoter on the 

Nantucket Shoal transects.  Although the survey design appears to cover the eastern extent of the species 

wintering range, the larger 2011 estimate for white-winged scoter could be due in part to the birds’ shift 

off the Shoals and inshore: because our sampling effort is necessarily greater nearer to land, such shifts 

might add variability to the annual abundance estimates.  We plan to explore the effect of stratifying by 

distance from the coast, as well as latitude, to achieve appropriate estimates.  A distance-to-coast sensitive 

stratification may also improve the precision on our estimates of black scoter abundance, as they are 

found farther offshore than the other species (Appendix 1).   

We consider the strata used for the analyses in this report to be preliminary, with improvements 

possible as additional data and analyses of distributions are available.  In general, long-term monitoring 

programs would benefit from a process of continual updating of survey strata, as new data are collected.  

Such an approach would not only improve estimator efficiency and reduce bias, but would also provide a 

method of tracking distributional shifts and understanding how species are responding to environmental 

and habitat changes. 

The larger issue of annual variability due to shifts in and out of the survey area (e.g., to the Great 

Lakes, Canadian waters, or coastal areas inaccessible to survey aircraft) cannot be addressed by the 

current survey alone.  It is worth noting that survey crews have not been able to enter the southwestern 

corner of Pamlico Sound, because the area is restricted airspace.  In 2010, several satellite-tagged black 

scoters were in this area, and some annual variation in black and surf scoter abundance may be due to our 

inability to survey what we know to be an important area for wintering scoters.  Observations from sea 

ducks outfitted with satellite transmitters may give insight into the frequency and scale of such shifts, and 

provide baseline data for development of a more comprehensive winter survey. 
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Appendix 1 

WINTERING SEA DUCK DISTRIBUTIONS ALONG THE ATLANTIC COAST OF THE UNITED STATES 

 

1. Abstract 

Monitoring data for sea ducks, which are limited, indicate that ten of the fifteen North American 

populations may be declining.  These apparent trends, combined with the fact that sea duck life histories 

are among the most poorly documented of North American waterfowl, have led to concerns for sea duck 

populations, and questions about the impacts of human activities, such as hunting, as well as catastrophic 

events and environmental change.  During the winter, thousands of sea ducks are found along the Atlantic 

coast of the United States, where they may be affected by proposed wind power development and the 

associated changes to marine traffic, aquaculture, sand mining, and other coastal development.  Possible 

impacts are difficult to quantify, because traditional winter waterfowl surveys do not cover many of the 

marine habitats used by sea ducks.  Thus, the United States Fish and Wildlife Service conducted an 

experimental survey of sea ducks from 2008-11 to characterize their winter distributions along the U.S. 

Atlantic coast.  Each year, data were collected on eleven species of sea ducks on more than two hundred 

transects, stretching from Maine to Florida.  In this paper, we describe distributions of five of these 

species: common eider Somateria mollissima, long-tailed duck Clangula hyemalis, white-winged scoter 

Melanitta fusca, surf scoter Melanitta perspicillata, and black scoter Melanitta americana.  Densities of 

the two species with the most northerly distribution, white-winged scoter and common eider, were highest 

near Cape Cod and Nantucket.  Long-tailed duck were most abundant around Cape Cod, Nantucket 

Shoals, and in Chesapeake Bay.  Surf scoter also concentrated within Chesapeake Bay, however, they 

were additionally found in high densities in Delaware Bay, and along the Maryland/Delaware outer coast.  

Black scoter, the most widely distributed species, occurred at high densities along the South Carolina 

coast and the mouth of Chesapeake Bay.  Spatial patterns of high density transects were consistent among 

years for all species except black scoter, which exhibited the most inter-annual variation in distribution.  

The distance from land, depth, and bottom slope where flocks were observed varied among species and 

regions, with over 75% of sea ducks observed in less than 20 m of water, closer than 4 NM from the coast 

and over seabed with slope shallower than 1°.  Common eider and long-tailed duck were observed closer 

to shore and over steeper ocean bottoms than the three scoter species.  Our results represent the first large 

scale quantitative description of winter sea duck distributions along the U.S. Atlantic coast, and should 

guide the development of sea duck monitoring programs and aid the assessment of potential impacts of 

ongoing and proposed offshore development.  
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2. Introduction 

The fifteen species of North American sea ducks (Tribe Mergini) are the least understood group of 

waterfowl protected under the Migratory Bird Treaty Act (Bellrose 1980, Goudie et al. 1994, Sea Duck 

Joint Venture 2003, Sea Duck Joint Venture Management Board 2008).  Monitoring data for these species 

are of limited scope and uncertain quality, and little is known about their distributions and habitat 

preferences (Zipkin et al. 2010).  Available data suggest ten of the fifteen North American sea 

ducks have declining populations, but causes of the declines are not known (Goudie 1989, 

Caithamer et al. 2000, Sea Duck Joint Venture 2003).   

Sea ducks exhibit delayed sexual maturity and have long life spans and low annual recruitment 

(Caithamer et al. 2000, Sea Duck Joint Venture 2003), making their population dynamics sensitive to 

adult survival and slow to recover from catastrophic events, environmental degradation, and 

anthropogenic impacts (Di Giulio and Scanlon 1984, Ohlendorf and Fleming 1988, Piatt et al. 1990, 

Guillemette and Larsen 2002, Larsen and Guillemette 2007).  Sea duck populations are legally harvested 

(Krementz et al. 1996, Krementz et al. 1997, Caithamer et al. 2000) and human activity is expanding in 

both their northern breeding and coastal wintering areas.  Along the U.S. Atlantic coast, an important sea 

duck wintering area, energy production (e.g., proposed wind farms), coastal development and 

engineering, sand mining, shipping, and aquaculture all have the potential to alter sea duck habitats and 

affect migrating and wintering birds.   

 Existing information on the distribution of sea ducks along the Atlantic coast comes from 

previous U.S. Fish and Wildlife Service (USFWS) surveys of near shore habitats (i.e., 0.25 NM from 

coast; Zipkin et al. 2010).  These data do not lend themselves to estimation of intra-annual spatial or 

temporal variation, or provide information for offshore areas, where many sea ducks are observed to 

aggregate and where wind energy development is proposed. 

The USFWS conducted several experimental offshore surveys of limited scope in the mid-

Atlantic region during the 1990s and early 2000s; these efforts highlighted concerns about reliance on 

near shore surveys to monitor sea duck populations (M.D. Koneff, USFWS, unpublished data).  To 

improve our understanding of offshore sea duck distribution, the USFWS initiated the Atlantic Coast 

Wintering Sea Duck survey in 2008.  This experimental survey was aimed at developing an operational 

survey for all sea duck species wintering along the full extent of the U.S. Atlantic coast.  The primary 

goals of the experimental survey were to estimate population sizes of wintering sea ducks, assess yearly 

variation and trends, and identify high concentration areas, as well as associations among sea duck 

occurrence and environmental features (Silverman et al. 2010, 2011, 2012).  Identifying associations 

among sea duck occurrence and physical features (e.g., distance to land, water depth, bottom slope) is a 
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first step towards defining research efforts necessary to identify offshore resources that are critical for sea 

ducks.  Clarifying relationships between critical resources and sea duck distribution and abundance 

(Morrison 2001) will provide a quantitative basis for understanding sea duck wintering ecology and 

movements, aid the design of monitoring programs, inform targeted conservation and management 

actions, and allow for the prediction of potential anthropogenic impacts.  In this paper, we analyze data 

from the Atlantic Coast Wintering Sea Duck survey to characterize the winter distributions of five sea 

duck species – common eider Somateria mollissima, long-tailed duck Clangula hyemalis, white-winged 

scoter Melanitta fusca, surf scoter Melanitta perspicillata, and black scoter Melanitta americana – along 

the U.S. Atlantic coast, and to identify the relationships between sea duck occurrence and distance from 

land, water depth, and bottom slope. 

 
3. Methods 

3.1 Survey description  

The Atlantic Coast Wintering Sea Duck survey was flown between late January and early March in 2008-

11.  The survey design varied among years with the 2008 design differing most substantially from the 

other years (Table A1.1). The design was changed in 2009 based on lessons learned in 2008 and consisted 

of east-west transects spaced at 5’ intervals of latitude (except in the northern part of the Chesapeake Bay 

where transects were spaced at 10’ intervals), extending east from the coastline to the longer of two 

distances: 8 NM or the distance to 16 m depth (hereafter, off-coast transects).  Transects were also located 

at 5’ intervals over the Nantucket Shoals, and across major coastal bays and sounds (e.g., Chesapeake 

Bay, Delaware Bay, Cape Cod, and Long Island Sound, see Fig A1.1). In 2009-11, as feasible, crews flew 

transects from north to south, then returned north and replicated every other line, flying south.  Surveys 

were conducted using USFWS fixed-winged aircraft flown at 110 knots and 70 m altitude.  During 

surveys, an observer and pilot-observer counted all sea ducks and other aquatic birds along transects, 

from the closest observable distance to the center line (~50 m) to 200 m on their side of the aircraft.   

 Due to the vagaries of field operations, transects and replicates differed somewhat between years.  

In this report, we only included transects that were sampled consistently among years (e.g., same latitude 

and similar area surveyed in two or more years, Fig. A1.1). We present results for 2009-11 from 253 

unique transects (249 in 2009 and 252 in both 2010 and 2011) and 151 unique replicated transects (111 in 

2009-10, 120 in 2011), representing 170 off-coast transects placed according to the 8 NM/16 m depth 

design rule, nine transects placed to cover the Nantucket Shoals, three covering shoals off the North 

Carolina coast, and 71 transects spanning shore-to-shore across bays and sounds.   
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3.2 Sea duck observations 

Pilot-observer and observer records were entered directly into laptop computers as sound files using 

software developed by the U.S. Fish and Wildlife Service (Hodges 2003).  Each computer was linked to 

the aircraft global positioning system (GPS) unit, enabling simultaneous recording of both observations 

and their coordinates in linked sound and ASCII files.  Locations recorded for each observation are not 

precise; rather they correspond to the location of the aircraft when an observation is recorded. Individual 

records include the (1) location and time, (2) species, and (3) number of birds seen along survey transects.   

In this paper, we refer to the individual records as “flocks” and the count associated with the record as the 

“flock size,” although flock boundaries are not well-defined and the counts are restricted to the area 

within the transect boundary.  The three scoter species can be difficult to identify in the field, leading to a 

large number of scoters recorded only to genus (Melanitta spp.).  In addition to recording observations, 

the software records aircraft location at least every 15 seconds while surveying to form a track file or 

flight path (Hodges 2003).   

Following each survey, observers transcribed the observation data from sound files to ASCII files 

and simultaneously attributed each observation record with appropriate geographic coordinates using 

another in-house software application (Hodges 2003).  We post-processed the observation files and flight 

paths using scripts written in the R statistical computing environment (R Development Core Team 2011) 

and ArcGIS 10.0 (Environmental Systems Research Institute 2011).  Processing included deleting bad 

GPS fixes and observations located far from transects (> 1 NM) or on land (> 0.5 NM inland), as well as 

correcting records (e.g., mistyped species codes, missing ending or starting locations, etc.). 

 
3.3 Physical features and tides 

We measured distance from land as the Euclidean distance between sea duck observations and the nearest 

edge of the Atlantic coastline obtained from the National Oceanic and Atmospheric Administration’s 

(NOAA) Coastal Geospatial Data Project (NOAA 2010) using ArcGIS 10.0 (Environmental Systems 

Research Institute 2011).  We extracted water depths from the United States Geological Survey digital 

elevation model (DEM) of the Atlantic Ocean obtained from the National Elevation Dataset (Gesch et al. 

2002, Gesch 2007).  We also used the DEM to create an interpolated surface of slope (i.e., the steepness 

of the ocean bottom based on changes in water depths, measured in degrees) for the Atlantic Ocean.   

We characterized the tide cycle for each sea duck observation by dividing the off-coast areas of 

the survey into fourteen regions each comprised of 20 contiguous transects. We defined separate regions 

for transects in bays and over the Nantucket Shoals.  To estimate the mean time of low tide within each 

region, we consulted NOAA’s Center for Operational Oceanographic Products and Services 

(http://oceanservice.noaa.gov/programs/coops/); using the three coastal reporting stations that were 
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closest to the region’s northern boundary, southern boundary, and center point, we calculated mean time 

of low tide by region and survey date.  We then subtracted the mean low tide time from the time of each 

sea duck record in the region to estimate time since low tide.  Flocks recorded within 1.5 hours of low tide 

were classified as occurring at low tide, those within 1.5 hours of high tide were classified as occurring at 

high tide; flocks observed 1.5 to 4.5 hours after low tide were classified as occurring during rising tide, 

while those between 7.5 and 10.5 hours after low were classified as occurring during falling tide. 

 
3.4 Data analysis 

3.4.1 Species distributions 

We calculated sea duck densities for each transect by dividing total number of birds observed for each 

species by area surveyed.  Area surveyed is the distance surveyed by each observer, multiplied by 150 m, 

the transect half-width (200 m) less the area under the plane that is not visible to observers (50 m).  For 

transects replicated in a given year, we averaged densities across replicates, by summing all birds counted 

on both replicates and dividing by the replicated area.  For species-specific scoter density calculations, 

unidentified scoters on individual transects were apportioned among the three species based on the 

composition of the identified scoters on a given transect and its northern and southern neighbors, 

extending north and south if none of the neighboring transects included speciated scoter records.  (This 

calculation assumes that the probability of identifying scoters does not differ by species and deserves 

further investigation.  However, the survey crews had substantial experience with aerial waterfowl 

observation and sea ducks; moreover, using only scoters identified to species did not alter our results.) 

To define distinct geographical areas of high and low density for each of the five species 

(hereafter “density regions”), we applied a spatially constrained grouping algorithm available in ArcGIS 

10.1 Spatial Statistics toolkit (ArcGIS 10.1 2012) to the three-year average densities for the 253 transects 

(area weighted average, as above, with two-year averages for some transects).  The algorithm, called 

SKATER for Spatial ‘K’luster Analysis by Tree Edge Removal (Assunção et al. 2006), identifies groups 

using a minimum spanning tree, based on (1) a spatial constraint matrix constructed from the transect 

locations and (2) transect densities, which represent the tree’s node values.  We defined transect 

neighbors using the “rook’s case”, where each transect’s neighbors include those directly to the north and 

south, as well as any contiguous transect to the east or west.   Transects located to the east or west that 

were not contiguous, but within 30-50 NM overwater or within 10-30 NM overland, were treated as half 

neighbors (weighted by 0.5, instead of 1 in the spatial constraint matrix).  The algorithm calculates an R2 

value (sum of squares calculated using the group means divided by total sum of squares) and pseudo-F 

statistic for 2-15 groups, allowing selection of an “optimal” number of groups.   
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The method, as implemented, does not allow for specification of a minimum group size, so, in 

some instances, the optimal grouping resulted in small clusters. This problem is exacerbated by the high 

degree of right-skew present in the count data and can result in optimal groupings consisting of one large 

cluster and many 1-2 transect clusters.  We therefore ran the clustering algorithm on log-transformed 

average annual densities.  To handle zero values, counts were adjusted prior to transformation by adding 

0.25, which is one half of the minimum “number” of birds needed to record a positive count. (We assume 

that if a bird is more than halfway within a transect, the bird would be counted and, if less than halfway 

within, the bird would not be counted: i.e., 0.5 or more is rounded to one bird, while less than 0.5 is 

rounded to zero birds).  This correction resulted in variable densities for transects of different lengths with 

no birds: longer transects with no birds have smaller transformed densities than shorter transects with no 

birds.   

For all species except black scoter, we identified a southern range limit and ran the spatial 

clustering only on data from transects north of this latitude.  When low/no density southern transects are 

included, the clustering algorithm is dominated by the range edge and we learn less about the spatial 

patterns in the core of the species’ winter range.  We set the southern limit for the clustering analysis at 

the latitude below which less than 1% of the all birds of the species were counted for long-tailed duck, 

surf scoter, and common eider.  Because a few white-winged scoters are sometimes seen quite far south 

of their main wintering areas in the company of surf and black scoter, we used a cutoff of 5% for white-

winged scoter.  The southern boundary we used for our analyses for common eider was 40°46’N latitude, 

for white-winged scoter it was 40°21’N latitude, and for long-tailed duck and surf scoter the southern 

boundary was 35°06’N latitude.  In addition to identifying a southern range limit, we also established an 

eastern range limit, or distance from coast, in order to exclude unoccupied areas.  We set the eastern range 

limit for all transects, except transects along Nantucket Shoals, to 15 NM from the coast since no sea 

ducks were detected this far from the coastline.    

To provide a more detailed picture of density variation within and between the three-year average 

density regions, we ran the transformed three-year average densities through SKATER with no spatial 

constraints on cluster membership in order to classify transects into six density categories by species (1 = 

low to 6 = high) and overlaid these results on the density regions.  The unconstrained SKATER algorithm 

is equivalent to k-means clustering (Hartigan and Wong 1979, Assunção et al. 2006) and the pseudo-F 

values represent the test statistic for a one-way analysis of variance (ANOVA) comparing within cluster 

sums of squares to between cluster values, with the highest F-value indicating the number of clusters with 

the lowest ANOVA p-value. 

To explore annual variation, we created annual density regions for each species and compared 

these results to the regions based on the three-year average.  We also ran the unconstrained clustering on 
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all three years of densities (un-averaged) simultaneously to define six density categories; we quantified 

interannual variation in density for each transect by subtracting its minimum density category value from 

its maximum.  For example, if a given transect was assigned to cluster 6 (high density) in 2009 but to 

cluster 1 (low density) in 2011, the difference of 5 would indicate a large interannual change in density.  

We overlaid these density change values, which range from 0-5, on the three-year average density regions 

to identify the regions and species with more or less variable distributions.  

 
3.4.2 Occurrence relative to physical features and tides 

We measured distance from land, water depth, and bottom slope for each sea duck flock with the goal of 

comparing patterns among species and years.  Such comparisons, however, are confounded by the change 

in coastal bathymetry with latitude: a shallow, gradual depth gradient along the southern coast is replaced 

by a steep, sharp drop in the north. To control for this pattern, we applied the unconstrained SKATER 

algorithm to classify the off-coast transects (i.e., excluding the Nantucket Shoal and bay transects) by 

three variables which characterize the transect profile: distance to 16 m depth, start depth at 0.25 NM 

from the coast (the point where survey protocol calls for the near shore start of each transect), and 

gradient (end depth – start depth / distance flown).  We used the three resulting off-coast transect clusters 

(corresponding roughly to the northern, mid-, and southern coast), along with the Nantucket Shoals and 

bays/sounds, to define five “transect types” for our analyses of species-specific associations with the 

physical features, and annual changes in these associations.   

We compared the distribution of the three variables (distance from land, water depth, and bottom 

slope), by species and transect type, to the characteristics of the surveyed transects: we determined the 

proportion of flocks within each transect type that were (1) greater or less than 4 NM from the land, (2) 

over bottom depths of 0-6 m, 6-12 m, 12-18 m, or greater than 18 m, and (3) over bottom slopes of less 

than 0.1 degrees, 0.1-0.5, 0.5-1.0, and greater than 1.0 degrees. We then calculated the proportion of 

surveyed area within these categories for each transect type.  When the range of a species did not include 

all transects of a given type, we used only transects that overlapped the species range to calculate 

surveyed area (thus, surveyed areas, and the proportion surveyed in each distance, depth, and slope 

category, differ somewhat by species within transect type). We highlight categories where the proportion 

of flocks observed is greater than the proportion expected based on the available surveyed area, testing for 

significant patterns with simple chi-square goodness-of-fit tests.     

We next compared the characteristics of the flock locations by species for each of the three 

variables and five transect types using one-way ANOVA, followed by Tukey’s multiple comparisons test.   

Diagnostic plots showed residuals that were generally somewhat right-skewed, but results were not 

sensitive to outlying values.   
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We explored annual patterns in the distance, depth, and bottom slope associated with flock 

locations observed on the off-coast transects, controlling for transect type, using two-way ANOVA with 

year and transect-type as factors.  Because none of the species are found in all three off-coast transect 

types – steep, moderate, and flat bottom gradients– in sufficient numbers, these comparisons were 

restricted to (1) steep and moderate gradient regions for common eider and long-tailed duck, (2) moderate 

and flat gradient regions for black scoters, and (3) moderate gradient for surf and white-winged scoters 

(i.e., one-way ANOVA with year as the factor was used for these two species).  We checked ANOVA 

assumptions using standard diagnostic plots, which suggested the modeling approach was reasonable.  

We assessed model fit using the Akaike Information Criterion (AIC), comparing the model AIC to the 

null AIC, and determined the significance of individual year and transect-type effects by considering their 

associated p-values.   

To explore whether variability in flock location characteristics might be explained by the tide 

cycle and time of observation, we estimated the effect of time and tide on distance, depth, and slope for 

each species using two-way ANOVA.  Time of day was treated as a categorical variable, with two levels: 

morning (11:59 EST and earlier) and afternoon (12:00 and later; results for finer divisions of the day were 

the same as for two intervals; we also checked for patterns by plotting of the variables versus time of 

day).  Because annual and transect-type differences might confound estimates of the time and tide effects, 

we fit these models using the residuals of the year/transect-type model.  Models fit to the unadjusted 

variables gave similar results.    

 

4. Results 

During the four survey winters, crews observed eleven species of sea ducks: common eider, long-tailed 

duck, surf scoter, white-winged scoter, black scoter, common goldeneye Bucephala clangula, bufflehead 

Bucephala albeola, common merganser Mergus merganser, red-breasted merganser Mergus serrator, 

hooded merganser Lophodytes cucullatus, and harlequin duck Histrionicus histrionicus.  Overall, for the 

five “focal” species, 168,675 birds (50,699 long-tailed duck; 41,234 black scoter; 33,842 common eider; 

18,550 surf scoter; 5,475 white-winged scoter; and 18,875 unidentified scoters) were observed 

comprising 11,970 flocks with flock sizes in the transect area ranging from 1 to 5,000 individuals.  For 

the transects included in the density analyses, 124,171 birds (32,271 long-tailed duck; 31,368 common 

eider; 28,602 black scoter; 14,584 surf scoter; 5,111 white-winged scoter; and 12,235 unidentified 

scoters) were observed comprising 9,565 flocks.  Of these 9,565 flocks, 83% were located more than 0.25 

NM from the coastline (60% of common eider flocks, 86% of long-tailed duck flocks, 92% of white-

winged scoter flocks, 93% of both surf scoter and black scoter flocks).  
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  Based on the three-year average densities for 2009-11, we identified twelve spatially distinct 

density regions for common eider (r2 = 0.76, Fig A1.2A), two for white-winged scoter (r2 = 0.36, Fig 

A1.2B), four for long-tailed duck (r2 = 0.42, Fig A1.2C), three for surf scoter (r2 = 0.24, Fig A1.2D), and 

fifteen for black scoter (r2 = 0.50, Fig. A1.3). The ArcGIS implementation of the SKATER algorithm 

does not calculate the pseudo-F value for more than fifteen groups, while the optimal number of clusters 

for black scoter was likely greater.  We therefore ran SKATER with the number of black scoter clusters 

set to greater than fifteen; the procedure resulted in fragmented, small groupings that did not provide any 

additional illumination into black scoter distribution. 

Although there was some variability in the annual density regions, the optimal number and 

location of the clusters were similar among years for all five species (results not shown).  For common 

eider, high densities were observed around Cape Cod and Maine coastal islands (Fig A1.4A).  Common 

eider densities were consistent across years (Fig A1.4B, Fig A1.8A-C), with 42% of transects shifting less 

than two density categories (50% of the occupied transects, Table A1.2).  Common eider had a compact 

distribution along the U.S. coast and only 17% of the surveyed transects in their range were unoccupied in 

all surveyed years (Table A1.2).  Long-tailed duck were observed at highest densities around Cape Cod 

and the Nantucket Shoals, followed by Chesapeake Bay, Long Island Sound, and the Maine coast (Fig 

A1.5A).  Their densities were second to common eider as the most consistent between years, with 28% of 

192 transects (or 40% of occupied transects) shifting one or fewer density categories (Table A1.2, Fig 

1.5B, Fig A1.9A-C).  

White-winged scoter, the least abundant of the five species, had highest densities in Cape Cod 

Bay, over the Nantucket Shoals, and at the eastern end of Long Island (Fig A1.4C).  Surf scoter was 

found at high densities within Chesapeake and Delaware Bays, and along the Maryland/Delaware coast 

with smaller areas of high density around Nantucket Island and the southern end of Pamlico Sound (Fig 

A1.5C).  Black scoters have a wide range, with high densities along the South Carolina coast, in Pamlico 

Sound, at the mouth of Chesapeake Bay, and around Cape Cod, and variably high densities around 

Delaware Bay, interspersed with low densities between these regions (Fig A1.6).   

The three scoter species have more variable annual densities than common eider and long-tailed 

duck (Fig A1.4D, Fig A1.5D, Fig A1.6, Fig A1.8D-F, Fig A1.9D-F) with only 13-16% of transects 

shifting one or fewer density categories (or 22-29% of occupied transects, Table A1.2).  Fourteen to 21% 

of occupied transects shifted four or more categories (calculated from Table A1.2, removing unoccupied 

transects).  Not unexpectedly, densities were more consistent in low density regions (Fig A1.4D, Fig 

A1.5D).  Densities of black scoter were the most variable among years (Fig A1.6, Table A1.2), shifting 

from the mouth of the Chesapeake Bay and Pamlico Sound in 2009, south to the South Carolina coast and 

north to Cape Cod in 2010-11.  In 2008, their distribution was intermediate between these patterns, with 
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high numbers in the mouth of the Chesapeake Bay, in Delaware Bay, and in Cape Cod, as well as along 

the south Georgia coast (results not shown).  The three scoter species also had a higher percentage of 

unoccupied transects than common eider and long-tailed duck (33-44%, Table A1.2).  This was likely a 

consequence of their lower overall abundance relative to the latitudinal extent of each species’ winter 

range.  

 Using the bathymetry measurements, we identified three transect types, representing steep, 

moderate, or flat seabed profiles (Fig. A1.7).  Table A1.3 presents the mean distance to 16 m depth, mean 

western start depth, and mean gradient for the three off-coast transect types, the Nantucket Shoals, and the 

bays and sounds.  Although the three profile types were interspersed throughout the survey area, the steep 

profile was most common along the Maine coast and the outer coast of Cape Cod with transects starting at 

over 16 m depth, the cutoff depth for our survey design; the moderate profile occurred mostly south of 

Cape Cod to the southern boundary of North Carolina and the flat profile predominated south of North 

Carolina.   

 Over the four survey years, crews observed more than 75% of the sea ducks in depths of less than 

20 m, within 4 NM of land, and over bottom slopes less than 1° (Table A1.4-5).  Sea duck flocks were not 

distributed randomly along transects with respect to the covariates (Table A1.4; 2 test p-values were 

<0.001 in 44 cases, between 0.001-0.05 in five cases, and not significant in eight cases).  When the last 

category (>18 m depth) was excluded, common eider, long-tailed duck, and white-winged scoter flocks 

were distributed randomly with respect to depth along the steep profile transects (p-values 0.36, 0.62, and 

0.77, respectively), but this result did not hold for the other transect types. 

In our comparisons among species, the results for distance from land were the strongest and most 

consistent across transect types: common eiders were found closest to shore, followed by long-tailed duck 

(Table A1.5, see also Table A1.4).  Both species were closer to shore on steep profile transects than on 

moderate (Table A1.5).  We also observed common eider over the steepest bottom slopes, followed by 

long-tailed duck.  Differences among the species in depth were less significant, and vary by transect type:  

long-tailed duck were found in deeper water in areas with steep profiles, while this was not the case for 

common eider. The location of common eider and long-tailed duck flocks, as measured by distance from 

land and depth, were more variable than the scoters (bold font, Table A1.5). 

The scoter species were significantly farther from shore than common eider and long-tailed duck, 

with no consistent differences between the three species (Table A1.4-5). Like common eider, white-

winged scoter flocks were farther from shore, and in somewhat deeper waters, on moderate profile 

transects compared to steep profile transects.  Both surf and black scoters were in deeper water on 

moderate profile transects than flat profile, but surf scoters were farther from shore in flat areas, while 

black scoters were closer.  Overall, black scoter was found at the shallowest depths, and white-winged 
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scoter at the deepest.  Scoters were also found, without distinction, over the flattest ocean bottom slopes.  

The bottom slopes underneath black scoter and long-tailed duck locations were the most variable of the 

five species (bold font, Table A1.5). 

We found significant yearly differences in distance from land for all five species.  Common eider, 

long-tailed duck, and white-winged scoter were farther from shore in 2011 (eider AIC=19.4, 2011 effect 

p<0.001; long-tailed duck AIC=3.0, 2011 effect p=0.02; white-winged scoter AIC=24.1, 2011 effect 

p=0.01), and the results were consistent across transect types for common eider and long-tailed duck.  

Common eiders were typically in deeper water on moderate profile transects than on steep, except in 2011 

(AIC=5.9, p<0.1 all effects).  The three scoter species were closer to shore in 2010 (black scoter 

AIC=74.8, p<0.001; surf scoter AIC=8.6, p<0.001; white-winged scoter AIC=24.1, p=0.03).  Black 

scoter distances varied by both year and transect type: typically closer to the coast on flat profile transects, 

their 2010 inshore shift occurred on moderate profile transects.     

Our results show little effect of time of day and tidal cycle.  These variables do not explain 

variability in distance and depth better than year and transect type, nor do they consistently explain 

variation not accounted for by year and transect type.   There were no significant time or tide effects on 

distance from land for common eider and long-tailed duck (AICs were negative).  Black scoters were 

somewhat closer to shore during low tides and in the afternoon (AIC=19.5, all p<0.04), and white-

winged and surf scoters were nearer to shore in the morning (white-wingedAIC=3.1, p=0.03; surf 

AIC=4.6, p=0.01).  While some time and tide effects were significant for depth, these effects involved 

complicated interactions and no consistent main effects or patterns across species.  

 

5. Discussion 

The 2008-11 experimental sea duck survey conducted by the USFWS generated the largest and most 

comprehensive dataset available to characterize the winter distributions of common eider, long-tailed 

duck, white-winged scoter, surf scoter, and black scoter along the U.S. Atlantic coast.  Our analyses 

provide the first quantitative description of important coastal regions, variation in density and abundance, 

and the characteristics of locations where sea ducks occur.  These five species of sea ducks have 

overlapping distributions that concentrate in several critical regions, most particularly around Cape Cod, 

Nantucket Shoals, and the mouth of Chesapeake Bay (Fig A1.2-3).  Nantucket Shoals is an especially 

important wintering area for long-tailed duck and white-winged scoter with over 43% of all observations 

for these species occurring on these nine transects (48% for long-tailed duck, and 14% for white-winged 

scoter).  Regions of significance for individual species include the Maine coastal bays and islands for 

common eiders, the Chesapeake Bay for long-tailed duck, Long Island Sound for white-winged scoter, 
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the Maryland coast and Delaware Bay for surf scoter, and the Pamlico Sound and South Carolina coast 

for black scoter.   

Despite substantial inter- and intrannual variation, high density transects and regions were similar 

between years.  Black scoter shifted the most between high density regions, with large numbers in 

Delaware Bay in 2008, at the mouth of Chesapeake Bay in 2009 (and 2012, M.D. Koneff, W.E. Rhodes, 

personal communication) and the southern coast in 2010 and 2011.  While it is not unexpected that the 

species with the largest winter range would exhibit the most annual variation in distribution, black scoter 

occurrence and abundance along the southern coast was particularly variable (Fig A1.6, only 8% of 

southern transects shifted one or fewer density categories).  We have additional, more intensive survey 

data for the South Carolina and Georgia coasts from 2011-12, which, in combination with information 

from black scoter outfitted with satellite transmitters (Loring 2012, Sea Duck Joint Venture 2012) may 

provide further insight into this species’ distribution along the southern coast.      

The characteristics of sea duck locations were not random with respect to bathymetry and 

distance from land.  Some of the patterns we observed likely resulted because transects were extended 

beyond the eastern range of the species.  For example, the depth distributions of all three species found 

commonly along the steep profile transects (common eider, long-tailed duck, and white-winged scoter) 

were similar to the surveyed depth profile when the deepest offshore category is excluded.  In the other 

areas where they co-occur, however, there were notable differences among the species in their 

distributions and association with the covariates: common eider was found more often in steeper areas 

nearer to shore, scoters in flatter areas farther from land, and long-tailed duck intermediate between these 

two.  The differences likely reflect differences in preferred prey and substrate:  common eider have been 

shown to concentrate over shallow reefs (Guillemette et al. 1993), surf and black scoter over sandy 

substrates (Stott and Olson 1973, Loring 2012), with long-tailed duck exhibiting the most varied habitat 

use (Stott and Olson 1973) 

There were also substantial annual changes in location, and little evidence that time of 

observation or tidal cycle explained variation in distance from land or depth.  It is important to note, 

however, that the survey was not designed to measure or control for time and tides, and the data may be 

insufficient to detect real effects.  The causes of species-specific patterns of abundance associated with 

distance, depth, and slope, and annual changes in these patterns, remain to be explored and a full 

understanding will likely require more detailed and finer scale observations.  

  Data from this survey are being used by USFWS partners as part of offshore development 

planning.  The results of the current analysis are essential to finalizing the design of an operational 

survey, as they provide the foundation for defining survey strata and anticipating annual variation in 

distributions. The physical covariate analysis will aid in specifying the survey’s eastern boundary, 
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allocating survey effort relative to priority species, and building efficient models to estimate winter 

abundance.  The patterns we observed suggest that any survey focused on abundance estimation for one 

of the five species will necessarily sacrifice information about the others, while an omnibus survey is 

unlikely to achieve the level of precision possible from more targeted monitoring efforts.  Further 

consideration of annual changes in distribution and association with physical covariates, however, may 

assist in developing an efficient multi-species survey to estimate wintering population sizes.  We view our 

preliminary assessment of associations among sea duck occurrence and the physical covariates examined 

as a first step toward specifying and testing hypotheses about critical resources exploited by sea ducks and 

modeling these relationships to improve survey design, estimation, and predictions about the effect of 

environmental change on these species.    

 

6. Management Implications 

To be justifiable, information from an operational Atlantic Coast Winter Sea Duck survey should address 

specific management or research objectives.  Obvious objectives include unbiased, efficient population 

estimation for harvest and habitat management and the identification of concentration areas for 

environmental planning applications.  The available experimental data, and a future operational survey, 

could also support critical research by informing development, and subsequent testing, of hypotheses 

about factors affecting sea duck wintering distributions (e.g., critical offshore resources utilized by sea 

ducks).  Understanding mechanistic relationships would help refine survey design and improve model-

based estimation procedures, and will be required to predict the effects of development activities or other 

environmental influences on critical resources and, ultimately, sea duck populations.  Advancing this 

management-oriented research agenda is beyond the capacity of any individual agency or organization 

and will require broad and well-coordinated collaboration.  Offshore planning envisioned by the evolving 

U.S. National Ocean Policy should provide further impetus for such collaboration.   
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Table A1.1. Survey effort, 2008-11.  In 2008, the coast was surveyed north only as far as Cape Cod, 
Massachusetts; the transects, which extended east from the coastline at 5 NM intervals, were flown as 
pairs with lengths of the pairs alternating between (i) 8 NM (the average distance to 6 m depth) and (ii) 
the greater of 14 NM (the average distance to 16 m depth) and the distance to 16 m depth; replication was 
planned, but only five replicates were completed, all over the Nantucket Shoals.  In 2010, a fifth survey 
crew replicated transects within Chesapeake Bay and along the Maryland/Delaware coast; and in 2011, all 
transects along the South Carolina/Georgia coast were replicated (see Silverman et al. 2010, 2011, 2012 
for more detailed description of study design).  To replicate previous surveys conducted along the 
Atlantic coast (see Zipkin et al. 2010), additional survey observations were made on tracks flown parallel 
to the shore at 0.25 NM and 0.50 NM from the coast in 2008-10.  Results from the extra 2010 and 2011 
replicates, and the coastal track observations, are not included in this report. The number of transects and 
replicates reported in this table include some that were not used in the analyses (see text). 

  2008 2009 2010 2011 

Survey dates 4-25 Feb 31 Jan-18 Feb 23 Jan-2 Mar* 31 Jan-17 Feb 

Northern extent 42o06’N 44o46’N 44o46’N 44o46’N 

Southern extent 26o56’N 28o26’N 28o26’N 30o21’N 

Number of crews 5 5 5 4 

Number of transects 233 261 264 260 

Number of replicates 5 133 199 134 

Distance flown (NM) 
1st replicate  3116 4170 4351 4374 

Distance flown (NM) 
2nd replicate 277 2176 2261 2148 

*Survey period was protracted due to extreme weather conditions and aircraft mechanical problems, and 
because one crew flew more than two replicates. 
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Table A1.2. Percent of transects within each difference category, estimating inter-annual variation in 
transect densities, 2009-11.  The first row is the percent of transects that had 0 densities in all years 
(hence have no change in density due to no birds being present).  

  Species 

Difference 
Common 

eider 
Long-tailed 

duck 
White-winged 

scoter 
Surf scoter Black scoter 

All years 0 birds 17 31 33 44 42 

0-1 42 28 15 16 13 

2-3 39 36 43 30 33 

4-5 2 6 10 9 12 

Number of transects 84 192 94 192 253 

 

 
 
Table A1.3. Mean (SD) of the bathymetry measurements for the three off-coast profile categories, 
Nantucket Shoals, and the Bays/Sounds. 

Cluster type 
Distance to 16 m 

depth (NM) 
     Start Depth (m) Gradient (°) 

Steep profile 1.0 (1.9) 16.7 (15.9) 7.4 (3.2) 

Moderate profile 4.4 (2.6) 4.3 (5.4) 1.9 (1.1) 

Flat profile 16.4 (6.2) 1.9 (2.0) 0.8 (0.2) 

Bays and sounds NAa 1.8 (4.4) 0.5 (1.8) 

Nantucket Shoals NAb 30.2 (19.5) 0.6 (0.9) 
aNot calculated due to the shallow depths within the bay transects and the limited number of transects 
reaching this depth (7 transects). 
bNot calculated because all transects’ start depths were greater than 16 m. 
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Table A1.4. Proportion of flocks by distance, depth, and slope categories for each species and transect type.  The proportion of the surveyed 
transect area within each category is included in bold.  Surveyed areas were subset to the latitude range within which the species winters.  Dark 
shading indicates categories where the proportion of flocks was at least 0.10 higher than the proportional survey area.  The nine Nantucket Shoal 
and 71 Bay transects are summarized separately in (B) and (C) on the following page.  Sample sizes are included in Table A1.5.  Italics indicate 
a non-significant difference between the flock proportions and the proportion available in the surveyed area (all p-values > 0.1); the remaining 
distributions of flock locations are significantly different from the surveyed area (most p-values < 0.001, the largest is 0.02 for black scoters 
slope on flat profile transects). 

  Distance from land (NM) Water depth (m) Slope (°) 
A. Off-coast transects 0.0-4.0 >4.0 0.0-6.0 6.1-12.0 12.1-18.0 >18.0 <0.1 0.1-0.5 0.51-1.0 >1.0 
Steep Profile     

Common eider 0.99 0.01 0.33 0.16 0.27 0.24 0.03 0.18 0.24 0.55 
White-winged scoter 0.96 0.04 0.18 0.18 0.18 0.46 0.04 0.50 0.39 0.07 

Long-tailed duck 0.94 0.06 0.25 0.14 0.18 0.43 0.12 0.25 0.63 
Surveyed area 0.70 0.30 0.05 0.03 0.05 0.87 0.04 0.35 0.22 0.38 

Moderate Profile     
Common eider 0.99 0.01 0.12 0.18 0.43 0.27 0.09 0.32 0.13 0.46 
Surveyed area 0.77 0.23 0.06 0.07 0.10 0.77 0.13 0.33 0.17 0.38 

White-winged scoter 0.41 0.59 0.07 0.11 0.07 0.75 0.18 0.75 0.06 0.01 
Surveyed area 0.69 0.31 0.09 0.09 0.14 0.69 0.24 0.43 0.11 0.22 

Long-tailed duck 0.92 0.08 0.32 0.30 0.19 0.18 0.26 0.54 0.12 0.08 
Surf scoter 0.75 0.25 0.16 0.32 0.45 0.07 0.41 0.54 0.03 0.03 

Black scoter 0.52 0.48 0.09 0.34 0.52 0.05 0.46 0.48 0.04 0.01 
Surveyed area 0.52 0.48 0.10 0.17 0.37 0.36 0.32 0.51 0.09 0.08 

Flat Profile     
Long-tailed duck 0.88 0.13 0.63 0.08 0.21 0.08 0.21 0.71 0.04 0.04 

Surf scoter 0.50 0.50 0.38 0.48 0.12 0.02 0.38 0.62   
Surveyed area 0.52 0.48 0.25 0.22 0.27 0.26 0.40 0.53 0.06 0.01 

Black scoter 0.76 0.24 0.67 0.29 0.03 0.01 0.58 0.39 0.03 0.01 
Surveyed area 0.37 0.63 0.24 0.37 0.36 0.03 0.49 0.47 0.03 0.01 
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  Distance from land (NM) Water depth (m) Slope (°) 
 B. Bays and Sounds 0.0-4.0 >4.0 0.0-6.0 6.1-12.0 12.1-18.0 >18.0 <0.1 0.1-0.5 0.51-1.0 >1.0 

Common eider 0.84 0.16 0.47 0.29 0.15 0.09 0.21 0.39 0.16 0.24 
Surveyed area 0.80 0.20 0.21 0.18 0.16 0.44 0.22 0.37 0.13 0.28 

White-winged scoter 0.71 0.29 0.27 0.33 0.17 0.24 0.29 0.54 0.10 0.07 
Surveyed area 0.81 0.19 0.21 0.18 0.17 0.45 0.22 0.38 0.13 0.27 

Long-tailed duck 0.74 0.26 0.35 0.40 0.16 0.09 0.34 0.42 0.10 0.14 
Surf scoter 0.59 0.42 0.41 0.41 0.16 0.04 0.42 0.47 0.09 0.04 

Black scoter 0.42 0.58 0.68 0.22 0.06 0.03 0.60 0.31 0.07 0.02 
Surveyed area 0.76 0.24 0.40 0.20 0.13 0.27 0.35 0.38 0.10 0.17 

           
           
C. Nantucket Shoals 0.0-8.0 >8.0 0.0-12.0 12.1-18.0 >18.0  <0.1 0.1-0.5 >0.51  

Common eider 0.84 0.16 0.26 0.46 0.28  0.13 0.53 0.34  
Long-tailed duck 0.20 0.80 0.10 0.17 0.73  0.45 0.40 0.15  

White-winged scoter 0.08 0.92 0.08 0.16 0.76  0.48 0.45 0.08  
Surveyed area 0.14 0.86 0.08 0.11 0.81  0.26 0.45 0.29  

  
 



 

A1‐20 
 

 
 
Table A1.5. Mean (SD) for coastal features associated with common eider, white-winged scoter, long-tailed 
duck, surf scoter, and black scoter flocks.  Bold indicates species with a coefficient of variation (CV) 
greater than the mean CV.  For example, the CV for common eider flocks’ distance from land along the 
steep profile transects is 1.06, which is larger than the average CV for all species on the off-coast transects 
(0.85). Superscripts indicate species means that are significantly different (one-way ANOVA with all 
pairwise comparisons within transect types, overall  = 0.05).  For example, common eider flocks (a) were 
found at shallower locations on steep profile transects than long-tailed duck flocks (b), while white-winged 
scoter depths are not significantly different from common eider or long-tailed duck (ab). 

    A. Off-coast transects 

  Distance (NM) Water depth (m) Slope (°) # of Flocks 

Steep Profile   
Common eider 0.7 (0.8)a 13.2 (11.6)a 1.7 (1.5)b 134 

White-winged scoter 1.4 (1.0)b 17.1 (9.0)ab 0.6 (0.7)a 28 
Long-tailed duck 1.3 (1.5)b 22.6 (22.8)b 1.9 (1.8)b 51 

Moderate Profile   
Common eider 1.2 (1.0)a 16.1 (8.4)b 1.3 (1.4)c 95 

White-winged scoter 4.1 (2.0)d 23.4 (9.7)c 0.3 (0.2)ab 85 
Long-tailed duck 1.9 (1.9)b 11.7 (9.1)a 0.4 (0.6)b 236 

Surf scoter 2.9 (2.0)c 12.0 (5.2)a 0.2 (0.2)a 153 
Black scoter 4.0 (2.2)d 12.8 (4.8)a 0.2 (0.3)a 325 

Flat Profile   
Long-tailed duck 1.4 (1.8)a 7.3 (9.5)ab 0.3 (0.5)b 24 

Surf scoter 4.1 (2.5)c 8.6 (4.5)b 0.1 (0.1)a 42 
Black scoter 2.9 (2.5)b 6.0 (4.0)a 0.2 (0.4)a 241 

B. Bays and Sounds         

Common eider 1.5 (1.8)a 8.7 (7.7)b 0.9 (1.3)c 1616 
White-winged scoter 2.7 (2.2)b 12.4 (8.4)d 0.3 (0.5)a 279 

Long-tailed duck 2.5 (2.0)b 9.7 (7.3)c 0.5 (1.0)b 1657 
Surf scoter 3.4 (2.1)c 8.3 (4.9)b 0.2 (0.3)a 1415 

Black scoter 4.4 (2.6)c 6.7 (4.7)a 0.2 (0.4)a 672 

C. Nantucket Shoals         

Common eider 6.2 (6.1)a 16.7 (8.5)a 0.5 (0.6)c 171 
White-winged scoter 20.6 (7.6)c 27.2 (9.4)c 0.2 (0.2)a 143 

Long-tailed duck 16.8 (8.5)b 23.5 (8.3)b 0.3 (0.4)b 1007 
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Figure A1.1. Location of Atlantic Coast Wintering Sea Duck surveys, 2009-11.  The red lines represent 
off-coast transects, blue lines represent bay transects, dark green lines represent Nantucket Shoals, and light 
green represent the southern shoal lines.
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Figure A1.2. Three-year density regions for (A) common eider, (B) white-winged scoter, (C) long-tailed duck, 
and (D) surf scoter estimated using the SKATER algorithm.  Regions are color coded based on density: black 
(high), dark grey, light grey, light blue, blue (low). Regions with “*” in panel (A) are low density regions defined 
by one transect within region 2 along the Maine coast.
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Figure A1.3. Three-year density regions for black scoter estimated using the SKATER algorithm.  
Regions are color coded based on density: black (high), dark grey, light grey, light blue, blue (low). 
Region 7 (*) is a high density region defined by two transects bordering regions 6 and 8 along 
Maryland’s outer coastline.
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Figure A1.4. Density regions for common eider (A-B, 12 regions) and white-winged scoter (C-D, 2 regions) with 
transect densities.  Regions are illustrated by the polygons, which are color coded from high to low density: black, 
dark grey, light grey, blue, light blue. In (A) and (C) the transect midpoints, indicated by colored dots, are coded by 
the six three-year average density categories from high to low: red, orange, yellow, bright green, green, dark green.  
In (B) and (D), the dots indicate the maximum change between 2009-11 in annual density category: from red for 
transects in both the highest and lowest density category to dark green for transects where the density category did 
not change.  Thus, red and orange indicate large shifts in density and green indicates little to no change.
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Figure A1.5. Density regions for long-tailed duck (A-B, 4 regions) and surf scoter (C-D, 3 regions) with transect 
densities.  Regions are illustrated by the polygons, which are color coded from high to low density: black, dark 
grey, light grey, blue, light blue. In (A) and (C) the transect midpoints, indicated by colored dots, are coded by the 
six three-year average density categories from high to low: red, orange, yellow, bright green, green, dark green.  In 
(B) and (D), the dots indicate the maximum change between 2009-11 in annual density category: from red for 
transects in both the highest and lowest density category to dark green for transects where the density category did 
not change.  Thus, red and orange indicate large shifts in density and green indicates little to no change.
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Figure A1.6. Density regions for black scoter with annual transect densities.  The density regions are illustrated by 
the polygons, coded from high to low density: black, dark grey, light grey, blue, light blue. Dots in (A), (B), and (C), 
illustrate the six annual transect density categories by year, for 2009-11, respectively, and are coded from high to low: 
red, orange, yellow, bright green, green, dark green.  In (D), the dots indicate the maximum change between 2009-11 
in annual density category: from red for transects in both the highest and lowest density category to dark green for 
transects where the density category did not change.  Thus, red and orange indicate large shifts in density and green 
indicates little to no change. 
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Figure A1.7. Transects coded by bathymetry classification identified by k-means clustering analysis. Maroon: 
Steep profile; Green: Moderate profile; Blue: Flat profile.
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Figure A1.8. Density regions for common eider (top row) and white-winged scoter (bottom row) with annual transect densities.  Regions are color coded 
based on density: black (high), dark grey, light grey, light blue, blue (low). Points illustrate the transect density categories by year and are coded into 
density categories, from high to low: red, orange, yellow, bright green, green, dark green.  (A, D = 2009; B, E = 2010; C, F = 2011.).
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Figure A1.9. Density regions for long-tailed duck (top row) and surf scoter (bottom row) with annual transect densities.  Regions are color coded based on 
density: black (high), dark grey, light grey, light blue, blue (low). Points illustrate the transect density categories by year and are coded into density 
categories, from high to low: red, orange, yellow, bright green, green, dark green.  (A, D = 2009; B, E = 2010; C, F = 2011.). 
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1. Abstract 

Determining appropriate statistical distributions for modeling animal count data is important for accurate 

estimation of abundance, distribution, and trends.  In the case of sea ducks along the U.S. Atlantic coast, 

managers want to estimate local and regional abundance to detect and track population declines, to define 

areas of high and low use, and to predict the impact of future habitat change on populations.  In this 

paper, we used a modified marked point process to model survey data that recorded flock sizes of 

common eider, long-tailed duck, and black, surf, and white-winged scoters.  The data come from an 

experimental aerial survey, conducted by the United States Fish & Wildlife Service (USFWS) Division of 

Migratory Bird Management, during which east-west transects were flown along the Atlantic Coast from 

Maine to Florida during the winters of 2009-11.  To model the number of flocks per transect (the points), 

we compared the fit of four statistical distributions (zero-inflated Poisson, zero-inflated geometric, zero-

inflated negative binomial and negative binomial) to data on the number of species-specific sea duck 

flocks that were recorded for each transect flown.  To model the flock sizes (the marks), we compared the 

fit of flock size data for each species to seven statistical distributions: positive Poisson, positive negative 

binomial, positive geometric, logarithmic, discretized lognormal, zeta and Yule-Simon.  Akaike’s 

Information Criterion and Vuong’s closeness tests indicated that the negative binomial and discretized 

lognormal were the best distributions for all species for the points and marks, respectively.  These 

findings have important implications for estimating sea duck abundances as the discretized lognormal is a 

more skewed distribution than the Poisson and negative binomial, which are frequently used to model 

avian counts; the lognormal is also less heavy-tailed than the power law distributions (e.g., zeta and Yule-

Simon), which are becoming increasing popular for group size modeling.  Choosing appropriate statistical 

distributions for modeling flock size data is fundamental to accurately estimating population summaries, 

determining required survey effort, and assessing and propagating uncertainty through decision-making 

processes. 

 

2. Introduction 

Effective management of wildlife populations requires high quality estimates of population abundance 

and distribution with associated measures of uncertainty.  Managers use abundance estimates to determine 

population status, for comparison to environmental carrying capacities, and to monitor population trends 

(Silvy 2012).  Understanding patterns of abundance and aggregation is necessary at both regional and 

local scales to evaluate the impacts of conservation actions and human disturbance.  Obtaining accurate 

population indices is difficult, however, because animals are often unevenly and unpredictably distributed 

(Caraco 1980, Certain et al. 2007, Silverman et al. 2001); for example, counts often include many zeros 
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(Hall 2000, Martin et al. 2005) and distributions of count data can be extremely right skewed (Bonabeau 

et al. 1999, Griesser et al. 2011).  The problem is compounded by a need for consistent repeated estimates 

over time; yet, sufficient data to characterize highly aggregated species distributions are expensive to 

collect and maintain.  The choice of appropriate statistical models for wildlife count distributions is 

fundamental for consistency and efficiency of abundance and distribution estimation and to facilitate 

more reliable uncertainty assessments (Williams et al. 2002).  

Waterfowl managers are especially interested in population estimates for five species of North 

American sea ducks (Tribe Mergini) that winter in large numbers off the Atlantic coast of the United 

States (Sea Duck Joint Venture 2003).  Data from a variety of sources suggest that common eider 

(Somateria mollissima), long-tailed duck (Clangula hyemalis), and black, surf, and white-winged scoters 

(Melanitta nigra, M. perspicillata, and M. fusca) may be declining (Perry and Deller 1995, Sea Duck 

Joint Venture 2003), and proposed offshore energy development has the potential to significantly alter 

their wintering habitat (Drewitt 2006, Garthe and Huppop 2004, Larsen and Guillemette 2007).  

Waterfowl managers need accurate and precise coast-wide winter abundance indices to assess trends and 

set annual harvest regulations, while energy regulators need predictions of spatial variation in abundance 

to inform responsible site placement of offshore structures and to guide future development activities.    

During winter, sea ducks form large foraging flocks, but can also be found alone or in small 

groups (Caithamer et al. 2000).  Their distributions can shift within and between years, due to changes in 

habitat, weather, and prey availability (Guillemette et al. 1993, Kirk et al. 2008, Lewis et al. 2008, Zipkin 

et al. 2010), and they can be found up to 40 miles from land (Appendix 1).  As a result, effective 

monitoring surveys are expensive, dangerous, and fraught with logistical challenges.  If the resulting data 

are to be worth collecting, then appropriate statistical models to interpret the data need to be available and 

accessible. 

 The United States Fish & Wildlife Service (USFWS) Division of Migratory Bird Management 

initiated an experimental aerial survey, conducted from Maine to Florida in the winters of 2009-11, to 

assess the feasibility and effectiveness of a long-term winter sea duck monitoring program along the 

Atlantic coast.  Determining whether precise estimates of regional annual abundance are possible for the 

five target species is necessary to evaluate the effectiveness of the survey.  To meet these objectives, we 

explore the fit of a set of statistical models to data from the Atlantic coast wintering sea duck survey.  Our 

goals are: 1) to identify a model, or models, that accurately describes the distribution of counts, 

characterized by an unusually heavy right tail and an excessive number of zeros; 2) to determine if the 

best model choice varies by species; and 3) to compare parameter estimates among species and assess 

whether more refined models (e.g., that stratify regions by high and low density or include habitat 

covariates) and/or data collection efforts are necessary.  Identifying a parsimonious model is of primary 
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importance because monitoring programs require repeated, timely estimates that are easy to explain and 

robust to unexpected data reduction or other survey changes. Thus, analytically complex and data-hungry 

approaches are ill-advised for management-oriented monitoring programs. 

The most challenging problem we face is characterizing a count distribution with an extreme 

variance to mean ratio, as is often observed in sea duck data (Zipkin et al. 2010).  Identifying appropriate 

statistical distributions for analyzing count data of animal populations is an ongoing area of investigation 

in ecology.  For reasons based on first principles and for convenience, the Poisson distribution has 

frequently been used (Caraco 1980) and is popular in modeling avian species (e.g., Fujisaki et al. 2008, 

Link and Sauer 2007).  Yet the assumption that the variance equals the mean often does not hold for many 

seabird species, which are known to form large flocks.  The negative binomial distribution, which allows 

the variance to exceed the mean,  is used as an alternative to the Poisson to characterize the count 

distributions for species where spatial aggregation is known to occur (e.g., Beauchamp 2011, Cohen 

1972, Wood 1985).  The negative binomial distribution is the result of a Poisson-Gamma mixture and 

converges to the Poisson distribution as the shape parameter, k, approaches infinity (Table A2.4).  Okubo 

(1986) recommended the geometric distribution – a discrete analog to the exponential distribution and 

also a special case of the negative binomial where the shape parameter equals one – to handle extremely 

large group sizes and demonstrated its applicability for a number of taxa including birds.  Empirical 

evidence suggests, however, that the negative binomial and geometric models do not adequately capture 

observed distributions of counts for some populations, especially those that are found in very large group 

sizes, such as some fish and bird species.  Ma et al. (2011) derived a logarithmic distribution from first 

principles based on rules for when individuals should join and leave groups; this model has outperformed 

the Poisson and negative binomial distributions in studies of house sparrows (Griesser et al. 2011) and 

seabirds (Jovani et al. 2008b).  Ma et al. (2011) additionally pointed out that the logarithmic can be 

derived as a limiting case of the negative binomial distribution as the shape parameter (k, Table A2.4) 

approaches zero (see also Quenouille 1949), placing it in the context of other distributions used to model 

ecological count data.   

More recently, the power law distribution has been proposed for modeling group sizes when the 

variance to mean ratio is much larger than can be accommodated by the aforementioned models 

(Bonabeau and Dagorn 1995, 1999).  Several studies have demonstrated that the power law distribution 

fits well to a number of empirical examples including populations of fish, seabirds, and mammals 

(Clauset et al. 2009, Beauchamp 2011, Jovani et al. 2008b, Kiett and Stanley 1998, Sjoberg et al. 2000).  

However, the power law distribution (using ecologically relevant parameter ranges) is capable of 

producing extremely large counts (e.g., in the millions; Clauset et al. 2009), which are not realistic for 

most sea duck species.  The power law can be truncated or combined with an exponentially decaying 
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function (Niwa 2003) to address this problem.  In fact, Ma et al. (2011) pointed out that the logarithmic 

distribution itself is a discrete form of a power law distribution with an exponential cutoff, where the 

power law exponent is -1 and the upper tail decays exponentially above a cutoff that is directly related to 

the average group size experienced by an individual.  Bonabeau et al. (1999) also presents mechanistic 

models of group size that lead to power law distributions with exponential decay.   

Other heavy-tailed distributions exist and should be considered in a model selection context 

before concluding that “power law-like” behavior observed in empirical data necessarily indicates a 

power law distribution (Clauset et al. 2009).   These include the Yule-Simon and the discretized 

lognormal distributions, which themselves can be viewed, respectively, as limiting distributions of 

stochastic preferential attachment or multiplicative growth processes (Clauset et al. 2009, Mitzenmacher 

2003).  Given the diversity of possibilities, a model selection framework would be useful to guide choices 

of appropriate distributions to model highly skewed ecological count data (Beauchamp 2011).  

In this paper, we test the fit of a series of over-dispersed statistical distributions, from the negative 

binomial to the power law, to counts of sea duck flock sizes; we also assess the fit of a series of over-

dispersed models to the distribution of flock frequencies.  Our assessment is a critical first step in the 

applied statistical work needed for the development of rigorous survey designs, power analysis, risk and 

impact assessments, and optimal management strategies for sea ducks. Appropriate modeling of the basic 

underlying distributional characteristics of avian count data is critical for making strong inferences about 

the distribution of target populations, particularly in the marine environment where logistics are 

inherently more difficult than in terrestrial systems and reliance upon statistical models is correspondently 

greater. 

 

3. Methods 

3.1 Data Collection 

The USFWS aerial survey was conducted along the Atlantic coast from the U.S.-Canadian border (44o46’ 

N) to Jacksonville, FL (30o21’ N) between January and March, 2009-11.  Four fixed-wing aircraft were 

flown along east-west transects spaced systematically at intervals of five minutes of latitude 

(approximately 5 nm apart).  These transects extended east from the coastline to the longer of two 

distances: 8 nm or the distance to 16 m depth.  Transects ranged in length from 1-80 nm (with 95% of 

transects between 4.8-46.4 nm).  The mean transect length was 17.9 nm (standard deviation: 12.8 nm) 

with transects less than 8 nm in areas that span bays and longer transects paralleling the shoreline in 

complicated coastal areas (e.g., Long Island Sound).  

The survey crews, which consisted of an observer and pilot-observer, flew at 110 knots and 70 m 

altitude, while counting sea ducks and other aquatic birds within 400 m-width strip transects (the observer 
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counts a 200 m strip on one side of the plane while the pilot does the same on the opposite side).  After 

completing their entire set of transect lines, each crew flew north to their first east-west transect line and 

replicated every other transect from north to south.  The replicate surveys were conducted approximately 

one week after the first surveys and do not duplicate the original track exactly, making the possibility of 

recounting the same individuals remote.  The three scoter species are difficult to distinguish reliably in the 

field, leading to a large number of scoters identified only to genus (Melanitta spp.).  As such, we focused 

our analyses on generic scoter species (records for all three species combined with unidentified scoters), 

along with the common eider and Long-tailed duck.  We refer to these two species and one genus as the 

“species groups” of interest.  

Surveys were conducted 1-18 February in 2009, 23 January to 2 March in 2010, and 31 January 

to 17 February in 2011.  Due to the vagaries of field operations, transects and replicates varied somewhat 

between years.  We use data from the 236 transects, and 76 replicates that were successfully surveyed in 

all three years.  Common eider and long-tailed duck do not winter in the southern portions of the survey 

area, and so models fit for them are based on fewer transects (88 for common eider, of which 21 were 

replicated; 173 for long-tailed duck, of which 54 were replicated). 

The data consist of observations along survey transects recording the (1) location, (2) species, and 

(3) number of birds seen at the location.   We refer to the group of birds recorded at one location 

(including single birds) as a “flock”, and the number of birds seen as the “flock size.” Note that birds are 

counted only within the transect boundaries, while the actual flock might have extended well beyond.  

 
3.2 Analysis 

To estimate the abundance of sea ducks by species, we represent the data as a modified marked point 

process (Daley and Vere-Jones 2003, Jacobsen 2006) where the flocks are the points and the size of the 

flocks, discrete and independent of the points, are the marks.  The point process is summarized by 

transect: we first model the flock counts (i.e., number of flocks) on each transect, and then model the 

flock sizes, conditional on the number of flocks observed.  Preliminary analyses indicated large variations 

and only small correlations in the number of species-specific flocks (points) among neighboring transects 

(0.23 for common eider, 0.41 for long-tailed duck, and 0.24 for scoters), due in part to zero-zero 

neighbors in areas of low density.  This suggests that the number of flocks on one transect is not 

predictive of the flock count on neighboring transects. We additionally found no significant relationships 

between the number/density of flocks per transect and the sizes of those flocks, which fits our assumption 

of independence in marks and points. 

 To determine the appropriate model to describe the observed number of flocks per transect (the 

point process), we tested the fit of four distributions to the transect-level flock counts: zero-inflated 
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Poisson, zero-inflated geometric, and zero-inflated negative binomial, as well as the standard negative 

binomial (Table A2.4).  The data were fit separately for common eider, long-tailed duck, and scoter 

species and we included an offset for transect area (to account for variable transect lengths), which was 

standardized by dividing the area of each transect by the mean of all transect areas. We fit each model 

using maximum likelihood estimation (MLE) in the program R (version 2.13.2; R development Core 

2011) with the VGAM package (Yee 2010).  

For the flock size data (the marks), we fit seven discrete distributions with positive integer 

support (because there are no flocks of size zero): positive Poisson, positive negative binomial, positive 

geometric, logarithmic, discretized lognormal (a discretized version of the continuous lognormal, 

truncated to a minimum of one), zeta (discrete power law), and Yule-Simon (which we refer to as the 

Yule) distributions (Table A2.5). We modeled the data for species groups separately using each statistical 

distribution (R development Core 2011). We again estimated the parameters for distributions using MLE 

in the program R (version 2.13.2; R development Core 2011).  We used the VGAM package (Yee 2010) 

to estimate parameters for the positive Poisson, positive negative binomial, positive geometric, and 

logarithmic distributions.  We used the methods and code provided in Clauset et al. (2009) to estimate the 

parameters for the discretized lognormal, the zeta, and the Yule distributions.  In applying the zeta 

distribution, both a shape parameter as well as a threshold (sometimes referred to as xmin) can be 

estimated, below which data are excluded from the analysis. This is sometimes done because it is 

hypothesized that power law distributions may occur only above some minimum value for a given data 

set (Clauset et al. 2009).  Because we were interested in fitting each of these distributions to the complete 

dataset, we set the threshold equal to one for the zeta distribution (and other distributions, where 

applicable).   

 For both the points and marks, we calculated the log-likelihood of each model.  We used the 

likelihoods to calculate Akaike’s Information Criterion corrected for finite sample sizes (AICc), which we 

then used to rank the models (Burnham and Anderson 2002).  We further assessed model fit using the 

Vuong closeness test (Vuong 1989) for pair-wise comparisons of the best fitting models to the flock size 

data (marks).  The Vuong is a likelihood-ratio test that measures whether one model is closer than the 

other to the unknown true model using the Kullback-Leibler information criterion (Vuong 1989) and can 

be derived for both nested and non-nested models.  The benefit of using the Vuong test is that it allowed 

us to evaluate the hypothesis that models ranked higher based on AICc were significantly closer to the 

true data-generating model than lower-ranked models through estimation of a p-value. We implemented 

the Vuong test by generalizing the “vuong” function for non-nested models (because all top models 

turned out to be non-nested) in the pscl package in program R (Zeileis et. al. 2008).  We then compared 

parameter estimates for the top models for each species group. 
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4. Results 

There were 1742, 2709, and 4047 flocks observed from 2009-11 for common eider, long-tailed duck, and 

scoters, respectively, with the total number of individuals being 28,968 common eider, 30,677 long-tailed 

duck, and 55,859 scoters.  The number of flocks per transect ranged from 0-95 for common eider, 0-130 

for long-tailed duck, and 0-104 for scoters.  Even after accounting for species ranges, there were a large 

number of transects in which no flocks were observed: 166 out of 327 for common eider, 413 out of 681 

for long-tailed duck, 525 out of 936 for scoters.   

Flock size ranged from 1-2000 for common eider, 1-750 for long-tailed duck, and 1-5000 for 

scoters with the median flock size equal to three for common eider and long-tailed duck and four for 

scoters.  However, the standard deviation of flock size was quite high: 94 for common eider, 39 for long-

tailed duck, and 112 for scoters.  These statistics and plots of log-frequency versus log-abundance (Figure 

A2.1) demonstrate the right skew of the flock size distributions.  

 
4.1 Distribution of number of flocks per transect 

The negative binomial distributions (zero-inflated and standard) were the best fitting distributions for the 

data on the number of flocks per transect for all species groups (Table A2.1; this was also true for the 

three scoter species identified to species – results not shown). For the common eider, the zero-inflated 

negative binomial distribution had a slightly higher log-likelihood (and hence lower AICc value) than the 

standard negative binomial.  In the case of the long-tailed duck and scoters, the zero inflation parameter 

was estimated to be zero, collapsing to the standard negative binomial distribution. The zero-inflated 

geometric and Poisson distributions had considerably lower log-likelihoods and comparably poorer fits to 

the data (Table A2.1).  

 
4.2. Distribution of flock sizes 

The discretized lognormal distribution produced the best fit to the data for flock sizes of all three species 

groups (Table A2.2; Figure A2.1).  This was a consistent result applying to all species together (Figure 

A2.2), each species separately (including the three scoter species when identified to species; results not 

shown) and each species separately by year (2009-11; results not shown).  In all cases, the discretized 

lognormal had the lowest AICc value when compared to the other six candidate distributions and had a 

significantly better fit compared to the other top models as inferred from Vuong pair-wise closeness tests 

(Table A2.2).  The next best models varied by species group with the logarithmic, Yule, zeta, and positive 

negative binomial distributions all producing reasonable (although inferior) fits to the data (Table A2.2; 

Figure A2.1).  For all three species, the positive negative binomial had a very similar, although slightly 

inferior fit as compared to the logarithmic distribution using AICc and Voung tests (e.g., the positive 
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negative binomial model is obscured by the logarithmic in Figure A2.1).  This is consistent with the fact 

that the logarithmic distribution is a limiting case of the negative binomial (Quenouille 1949, Ma et al. 

2011) and that the shape parameter in the negative binomial for all species was close to zero (Table A2.3).  

This was also true for the Yule and zeta distributions, whose fits were qualitatively very similar, although 

the Yule outperformed the zeta for all species by AICc and Vuong tests (Table A2.2). The geometric and 

positive Poisson models were the worst fitting models in all cases with likelihoods much lower than the 

other models (see caption for Table A2.2) and were thus excluded from further consideration. 

In all comparisons, the direction of the Vuong test statistic supported the ranking of model fits by 

their AICc values (and by their log-likelihoods).  The discretized lognormal had a significantly better fit 

as compared to the other six distributions for all three species groups (p<0.001; Table A2.2).  In all other 

pair-wise comparisons, the distribution with the highest likelihood value was judged closer to the true 

model than the inferior model, although in some situations the difference between models was not 

significant.   

Figure A2.2 shows log-probability versus log-abundance plots for each distribution for simulated 

data using parameter values as estimated by maximum likelihood fitting to combined flock size data from 

all species (Figure A2.2 column 1) as compared to the actual data of all species groups combined (Figure 

A2.2 column 2).  The figure demonstrates that the positive Poisson, positive geometric, logarithmic, and 

positive negative binomial distributions are unable to account for the large flocks sizes that are observed 

in the data while the zeta and Yule are capable of producing flock sizes that are much larger than 

observed in the data.  Figure A2.2 highlights the superior fit of the discretized lognormal distribution – 

which best captures the range of variation observed in the right tail – to the sea duck data as compared to 

the other six distributions.  

The parameter estimates for the top models were comparable among species groups with 

estimates generally being more similar between common eider and long-tailed duck as compared to 

scoters (Table A2.3).  In the parameterization of the zeta and Yule distributions that we present (Table 

A2.5), the mean is not finite for values of ܽ ൏ 1  (Clauset et al. 2009, Yee 2010), yet for all three species 

groups the maximum likelihood estimates for these parameters were less than one.  Thus, in order to 

compare the output from the fit of each statistical distribution, we simulated count data for each species 

group that was the size of the sample data (݊௔௟௟ ൌ 8498; ݊௖௢௠௠௢௡	௘௜ௗ௘௥ ൌ 1742;  ݊௟௢௡௚ି௧௔௜௟௘ௗ	ௗ௨௖௞௦ ൌ

2709;  ݊௦௖௢௧௘௥௦ ൌ 4047) 10,000 times and report the mean values for the summary statistics (Table 

A2.3).  These results demonstrate the relationship between sample moments and moments of MLE fitted 

distributions.  Note that the mean of the fitted logarithmic and negative binomial distributions match the 

observed sample mean (as expected given that the sample mean is the maximum likelihood estimator of 

the negative binomial and logarithmic means), but result in too many moderately large groups (3rd 
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quartile), too few very large groups (maximum), and an underestimation of the variance observed in the 

data.  Thus, although the fitted negative binomial and logarithmic distributions describe the mean of the 

data well, they mischaracterize other aspects of the data distribution and underestimate uncertainty about 

the mean.  On the other end of the spectrum, the Yule and zeta distributions have unrealistically heavy 

tails and overestimate the variance in the counts.  For example, the average standard deviation of flock 

size for all species combined (as estimated from simulations) was 1.15E+09 for the zeta distribution as 

compared to 25.8 for the discretized lognormal and 23.6 for the negative binomial (and 91.1 in the 

observed data).  Although the standard deviation of flock size is only slightly higher with the discretized 

lognormal as compared to the logarithmic and negative binomial distributions, the latter two distributions 

are more likely to underestimate maximum flock size (last column, Table A2.3).  The discretized 

lognormal distribution best matches the range of the observed data (Figure A2.2, Table A2.3) but it also 

consistently underestimates the mean flock size, in part because it produces too few very large counts.  

Thus, while the discretized lognormal captures the variance and the upper tail probability of the data 

somewhat better than the other distributions (negative binomial and logarithmic underestimate upper tail 

probability and variance; zeta and Yule overestimate upper tail probability and variance), this comes at a 

cost to efficient estimation of the mean (negative bias of 20-30% in our simulations).  Given this result, 

Poisson mixture distributions may currently be preferable for abundance estimation, assuming reasonable 

variance corrections could be incorporated. 

 

5. Discussion 

We described a marked point process framework for modeling flock numbers and flock sizes to 

characterize sea duck distribution and abundance in the Atlantic.  We employed model selection 

techniques to choose appropriate models for skewed and zero-inflated distributions of flock numbers and 

highly right-skewed distributions of flock sizes.  Our process-oriented approach should be useful in 

modeling other highly aggregated, patchily distributed species.  The distributions that best fit the “points,” 

i.e., the number of flocks per transect, (negative binomial and zero inflated negative binomial) and 

“marks,” i.e., the flock sizes, (discretized lognormal) were surprisingly consistent across sea duck species 

and did not vary among years.   

Our results have important implications for estimating annual abundances of wintering sea ducks 

and for designing future surveys that will be able to generate information on population statuses and 

trends.  Inappropriate choice of the distribution family in a modeling framework can lead not only to bias 

in parameter estimates, but to inaccurate assessments of uncertainty and statistical power.  Appropriate 

characterization of uncertainty and estimation of statistical power are of particular importance in a 

management context because uncertainty will be propagated through decision-making processes and will 
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affect our understanding of population dynamics, as well as the design and implementation of future 

monitoring programs.  For example, national harvest regulations for many species of ducks are set 

annually by the U.S. Fish and Wildlife Service using population estimates derived from aerial surveys of 

breeding areas (e.g., USFWS 2012, Williams et al. 2002); these regulatory decisions are informed by 

predictions from models of population dynamics that are also derived from survey estimates. Because the 

sea ducks considered here breed in remote areas that are not covered by current surveys, estimates from 

winter areas may provide our best means of monitoring responses to exploitation and environmental 

change, but only if estimates from winter surveys can correctly and precisely estimate abundance.  Our 

results are also particularly relevant to applications that require proper modeling of the extreme values of 

abundance observed for many species and where surveying presents logistical challenges, thereby 

limiting the number of samples collected.  This includes risk and impact assessments, as well as detection 

of high-use areas.  As marine environments along the eastern United States are currently being considered 

for development of wind energy production (Bowes and Allegro 2012), sufficient survey methods and 

accurate maps are critically needed to assess the potential impacts of the proposed development on sea 

ducks and seabirds.    

The best-fitting distributions for flock size in our study (discretized lognormal, logarithmic, 

negative binomial, Yule, and zeta) differ from each other primarily in the shape of the upper tail.  The 

probability mass of the zeta distribution declines log-linearly in the tail (that is, linearly on doubly 

logarithmic axes), and the Yule distribution nearly so, making them the heaviest tailed distributions in our 

candidate set.  This is evident in the relatively common occurrence of very large counts in these 

distributions (column one in Figure A2.2, Table A2.3).  The probability mass of the upper tail of the 

discretized lognormal distribution declines in a log-quadratic fashion, whereas the logarithmic and 

negative binomial display an exponential decay in the upper tail.  Thus, the heaviness of tails in these 

distributions is ranked as follows: zeta ≈ Yule > discretized lognormal > logarithmic ≈ negative binomial.  

That the discretized lognormal distribution was consistently selected for our three sea duck species groups 

suggests that the upper tails of flock size distributions for these species are not exponentially bounded 

(logarithmic and negative binomial), but not as extreme as would be predicted under power law-type 

distributions (e.g., zeta, Yule).  This is fortunate for abundance estimation, because power law behavior 

implies that the variance (for a <2) and mean (for a <1) are not finite; that is, that sample moments would 

increase with the area and time spent sampling rather than providing estimates of meaningful 

characteristic properties of the abundance distribution.       

The lognormal distribution has a long history in ecology (e.g., Preston 1948) and a diversity of 

other fields (Limpert et al. 2001) where it often arises as a plausible alternative to other heavy-tailed 

distributions like power laws (e.g., in birds; Allen et al. 2001). One classical generative process for a 
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lognormal distribution is the multiplicative stochastic growth process first proposed by Gibrat (1931), in 

which the size of an entity changes by successive multiplicative random effects; if the multiplicative 

random effects are independent and lognormally distributed, then the size distribution will be lognormal.  

The lognormal distribution arises even more generally as a direct consequence of the Central Limit 

Theorem for products of random variables; any process that involves the product of a sufficiently large 

number of independent and identically distributed random variables having any distribution with finite 

mean and variance has a limiting lognormal distribution.  Thus, a discretized lognormal distribution of 

counts could arise from a variety of plausible ecological mechanisms.  However, the lognormal 

distribution is known to produce biased estimates of the mean and variance when it is “contaminated” 

with even small amounts of data from other distributions (Myers and Pepin 1990).  In our dataset of flock 

sizes, the discretized lognormal underestimated the sample mean for all three species (Table A2.3), which 

suggests that our data may not conform perfectly to a lognormal distribution.  One possible reason for 

small deviations from lognormality might be nonstationarity in the underlying process.  It may be 

possible to control for this problem by stratifying areas of high/low abundance or adding covariates that 

account for changes in group sizes, such that the conditional distribution is closer to lognormal.  The lack-

of-fit of the lognormal may also reflect the manner in which observers count birds in aerial surveys: 

singles and pairs have a higher probability of being undetected (Pollock and Kendall 1987), whereas 

flocks with more birds are typically undercounted (Pearse et al. 2008).  Further exploration of the 

counting process and the relationship of the observed counts to actual sea duck flock sizes might help 

explain the disparity between the observed and lognormal tails. The ultimate choice of which distribution 

is the most appropriate depends on the modeling purpose.  In our case, the discretized lognormal was 

identified as the best fitting distribution overall, and therefore might be the best choice for simulation 

modeling that requires a compact representation of the whole distribution.  Yet, given the sensitivity of 

moment estimators to slight deviations from the lognormal distribution (Myers and Pepin 1990), one 

might be justified in choosing a statistical distribution with a lower total log-likelihood that can provide 

more robust mean abundance estimates, such as the logarithmic or negative binomial 

distributions.  Simulation studies could help to choose the optimal distribution for particular applications. 

Bonabeau et al. (1999) suggested that an exponentially decaying power law may be a useful 

distribution for dealing with heavy-tailed data that is bounded.  To determine the appropriateness of the 

exponentially decaying zeta distribution compared to our top performing models, we additionally fit this 

distribution to flock size data for the three species groups.  While the exponentially decaying zeta 

distribution had greater log-likelihood values (-5324.3 for common eider, -7854.3 for long-tailed duck, 

and -12713.0 for scoters) than either the zeta or Yule (suggesting a comparatively better fit; Table A2.2), 

it was still outperformed by the discretized lognormal (p<0.001 in Vuong pair-wise comparison tests and 
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lower AICc) for all three species groups, supporting the hypothesis that our data, while skewed, are less 

heavy-tailed than distributions in the power law family.  Although the exponentially decaying power law 

may not produce a better fit to our data than the discretized lognormal, it may provide a useful alternative 

because of the above mentioned problems associated with estimating the moments of lognormal 

distributions when the lognormal is not a perfect fit.  By no means did we present an exhaustive list of 

possible statistical distributions for modeling skewed count data.  We suggest further exploration of the 

exponentially decaying zeta distribution, as well as other distributions as possible alternatives to the 

discretized lognormal, when abundance estimation is the objective. 

It is important to note that selection among statistical distribution models that differ primarily in 

their tails is notoriously difficult with small sample sizes and noisy data (Beauchamp 2011, Clauset et al. 

2009).  We have used data from a very large survey, but many ecological datasets are substantially 

smaller and would not allow discrimination among the more similar of the models studied here (Myer and 

Pepin 1990).   This suggests a useful role for meta-analysis, synthetic analysis of large databases, and 

validation of mechanistic models of processes determining group size distributions, so that 

recommendations for appropriate choices of distributions can be made for selection of distributions on the 

basis of taxonomy, life history, environment, etc.  The similarity in model fits among species, species 

groups, and years is encouraging, as it suggests that model power and estimator precision for individual 

species groups can be gained by borrowing information both over time and across species (Williams et al. 

2002).        

 Many mechanistic models of group size formation and aggregation have been proposed to give 

rise to several of the distributions studied here.  For example, Caraco (1980), Niwa (2003) and Ma et al. 

(2011) have each demonstrated how differing rules related to the decision on when to join or leave groups 

can lead to negative binomial, decaying power law, and logarithmic distributions of group size, 

respectively.  However, in our sea duck example, flock detection and flock size counts are likely the result 

not only of the biological processes associated with flocks coalescing, but also the specific fixed-width 

sampling protocol used during the surveys (i.e., the observation process).  In this case, the negative 

binomial distribution combined with the discretized lognormal produced the best fit to our marked point 

process for observed number of flocks and flocks sizes, but it is possible that other sampling approaches 

could yield different combinations.  Counting large flocks on the ocean within a 200 meter strip while in a 

fast moving airplane is a difficult task, but one that can be improved through training and revised 

protocols.  Beauchamp (2011) noted that rough conditions at sea could bias counts and possibly alter 

which statistical distribution fits best to observed flock sizes.  Further exploration of how to minimize and 

account for the effects of the observation process, such as including covariates, detection functions, and 

upper limits imposed by the size of the observation unit, may lead to more accurate and precise counts 
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and better estimates of uncertainty, allowing for better understanding of the biological mechanisms that 

produce variation in sea duck flock sizes.     

Statistical models of ecological count data can be far more complex than those presented here.  It 

is common to include spatial, temporal, and habitat strata, environmental and biological covariates 

influencing ecological processes leading to the presence or absence of a species, and sampling covariates, 

which can affect the detection process of individuals during surveying. We intentionally focused our 

study on simple distributional models for avian count data, neglecting additional complexity that may in 

some cases improve model explanatory power.  It is fundamental to first determine what form of the 

underlying statistical distribution is appropriate before real world complexities can be incorporated into 

models.  Our marked point process approach matches the observational process (e.g., seeing a flock, then 

determining its size) and readily allows for inclusion of covariates for both flock detection and flock size 

estimation.   

A parsimonious approach is recommended for a second reason: large scale monitoring programs 

often do not have the capacity to collect, maintain, and utilize extensive ancillary data sets, and long-term 

changes in distribution, abundance, or phenology may make models calibrated to fixed strata (e.g., the 

study area; areas of high density) inappropriate or inefficient at large scales.  Thus, simple descriptions 

that generalize across species and years are extremely valuable, when possible.  Our results suggest that 

the sea duck counts based on our survey methodology have similar statistical properties, and comparable 

models can be used over time and across species.  These models will form the basis for continued 

exploration aimed at identifying the covariates affecting wintering sea duck populations, and providing 

decision makers with the best possible description of sea duck distributional patterns and trends. 
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Table A2.1. Log-likelihood and parameter estimates for distributions fit to data on the number of flocks per transect for common eider, long-tailed 
duck, and all scoters combined.  Likelihoods are presented because likelihood rankings were identical to AICc rankings (sample sizes were 
relatively large and the number of parameters for all fitted models ranged from 2-3).  Specifications for each distribution are given in Table A2.4.  
The parameter ∅ is the zero inflation parameter (ranging from 0-1) and is the probability of a structural zero. The second to last column shows the 
observed sample mean number of flocks per transect for each species (bold) and estimates of the mean under each distributional assumption.  Note 
that the MLE of the negative binomial distribution is the sample mean by definition.  The last column shows the observed proportion of transects 
without flocks (bold) and the proportion estimated under each distributional assumption.  The zero inflated negative binomial is excluded from this 
table for the long-tailed duck and scoter species because the zero-inflated parameter was estimated to be zero, collapsing the distribution to a 
standard negative binomial. 

Log-likelihood ∅ Parameter estimates Mean flocks per transect Transects with no flocks
Common eider 5.33 0.51 

Zero inflated negative binomial -727.72 0.19 µ=7.20 k=0.43 5.81 0.43 
Negative binomial -743.24 µ=5.33 k=0.24 5.33 0.48 
Zero inflated geometric -885.62 0.07 p=0.55 1.12 0.57 
Zero inflated Poisson -1444.37 0.56 λ=9.57 4.18 0.49 

Long-tailed duck 3.98 0.61 
Negative binomial -1162.43 µ=3.98 k=0.21 3.98 0.54 
Zero inflated geometric -1644.99 0.05 p=0.66 1.86 0.68 
Zero inflated Poisson -2270.05 0.45 λ=6.82 3.73 0.45 

Scoters 4.32 0.56 
Negative binomial -1782.63 µ=4.32 k=0.20 4.32 0.53 
Zero inflated geometric -2286.72 0.07 p=0.59 1.33 0.61 
Zero inflated Poisson -4280.94 0.49 λ=7.80 4.00 0.49 
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Table A2.2. Model selection results for each model fit to non-zero flock size data for common eider, long-tailed duck, all scoter species combined.  
Log-likelihood values are shown in the diagonals.  Likelihoods are presented because likelihood rankings were identical to AICc rankings (sample 
sizes were relatively large and the number of parameters ranged from 1-2 for all fitted models).  The off-diagonals report the results from pair-wise 
Vuong closeness tests.  In all pair-wise comparisons, the distribution with the lower log-likelihood value was also identified as the best (closest to 
unknown true model) by the Vuong test statistic.  However, the values in grey show when the difference was not significant.  The positive Poisson 
and geometric models are excluded from our comparison because their likelihoods indicated very poor fits to our data (common eider: -6585.6 
geom, -61,046.0 pois; long-tailed duck: -9160.3 geom, -48,029.6 pois; scoters: -14519.5 geom, -111268.9 pois). 

Discretized lognormal Yule Zeta Logarithmic Positive negative binomial 
 Common eider      
  Discretized lognormal -5227.0 
  Yule <0.001 -5347.9 
  Zeta <0.001 <0.001 -5404.8 
  Logarithmic <0.001 0.049 0.333 -5425.5 
  Positive negative binomial <0.001 0.041 0.304 <0.001 -5429.3 
 Long-tailed duck      
  Discretized lognormal -7718.0 
  Yule <0.001 -7922.1 
  Logarithmic <0.001 0.394 -7931.6 
  Positive negative binomial <0.001 0.352 <0.001 -7935.9 
  Zeta <0.001 <0.001 0.007 0.007 -8022.5 
 Scoters      
  Discretized lognormal -12312.9 
  Logarithmic <0.001 -12764.7 
  Positive negative binomial <0.001 <0.001 -12774.4 
  Yule <0.001 0.126 0.149 -12901.7 
  Zeta <0.001 0.005 0.008 <0.001 -13069.6 
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Table A2.3. Parameter estimates for the top five models to the flock size data for: all species combined, common eider, long-tailed duck, and 
scoters (listed in order by AICc).  The values shown are the parameters for each distribution as described in Table A2.5.  The six right-most 
columns of the table give summary statistics of the observed flock size data for each species (bold) as well as summary statistics of simulations of 
flock size under each fitted distribution.  The summaries for each distribution are the mean values based on 10,000 simulations using each species 
parameter estimates and size of the sample data.  The last column is the standard deviation of the maximum count over the 10,000 simulations.  
Note that the MLE parameters for the negative binomial and logarithmic distributions are such that the estimated mean of the distribution is the 
sample mean by definition. 

 Parameter estimates  1st quartile  Median  Mean   3rd quartile  Max  SD (max)
All species 2 3 13.59 9 5000 

Discretized lognormal µ=1.093 σ=1.478 2.00 4.00 10.03 9.11 993.72 634.77 
Logarithmic p=0.982 1.89 4.45 13.59 14.50 343.81 58.40 
Positive negative binomial µ=0.438 k=0.008 1.96 4.63 13.54 14.57 338.26 59.22 
Yule a=0.610 1.00 2.00 4.6E+06 7.88 3.9E+10 3.3E+12 
Zeta a=0.518 2.00 4.00 2.0E+07 14.56 1.7E+11 9.6E+12 

Common eider 2 3 16.63 9 2000 
Discretized lognormal µ=0.866 σ=1.680 1.14 3.40 11.83 9.45 959.22 843.11 
Yule a=0.609 1.00 2.03 3.6E+04 7.84 6.2E+07 1.7E+09 
Zeta a=0.521 2.00 3.96 1.4E+08 14.37 2.4E+11 2.2E+13 
Logarithmic p=0.986 1.97 5.05 16.63 17.34 347.07 75.37 
Positive negative binomial µ=0.419 k=0.006 1.99 5.13 16.89 17.69 350.89 76.29 

Long-tailed duck 2 3 11.32 7 750 
Discretized lognormal µ=0.886 σ=1.526 1.03 3.01 9.13 8.16 649.26 459.21 
Yule a=0.652 1.00 2.00 1.5E+04 6.84 4.1E+07 1.5E+09 
Logarithmic p=0.977 1.16 4.00 11.33 12.33 231.47 47.87 
Positive negative binomial µ=0.314 k=0.008 1.23 4.00 11.29 12.35 227.77 46.70 
Zeta a=0.548 2.00 3.64 8.2E+05 12.56 2.2E+09 1.0E+11 

Scoters 2 4 13.80 10 5000 
Discretized lognormal µ=1.286 σ=1.369 2.00 4.00 9.97 9.94 589.93 359.30 
Logarithmic p=0.982 1.85 4.57 13.80 14.71 315.93 60.20 
Positive negative binomial µ=0.919 k=0.017 1.98 4.90 14.04 15.15 313.52 61.90 
Yule a=0.586 2.00 2.06 1.2E+05 8.48 4.9E+08 1.3E+10 
Zeta a=0.498 2.00 4.00 9.0E+07 16.20 3.6E+11 2.4E+13 
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Table A2.4. Parameters and probability mass functions for the four distributions that we compare using 
the data on the number of sea duck flocks per transect.  In all cases, the support is  ݔ ∈ ሼ0,1,2,3, … ሽ.  
Specifications of all distributions are as in the VGAM R package (Yee 2010). 

Distribution Parameters
Probability mass function 
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Table A2.5. Parameters and probability mass functions for the seven distributions that we compare using 
the sea duck flock size data.  In all cases, the support is ݔ ∈ ሼ1,2,3, … ሽ.  Specifications of all distributions 
are as in the VGAM R package (Yee 2010) except for the discretized lognormal which is specified as in 
Clauset et al. (2009). 

Distribution Parameters Probability mass function 
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Figure A2.1. Model fits (lines) and observed probabilities (black dots) for count data for the three species groups: common eider, long-tailed duck, 
and scoters.  Fits are shown for the top 5 models: logarithmic, discretized lognormal, zeta, Yule, and positive negative binomial.  The positive 
negative binomial fit is not visible because it is obscured by the logarithmic fit. 
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Figure A2.2. Simulated (left column) and observed (right column) data for all species fitted using the 
seven distributions that we compared.  Note the variable x-axes for the simulated data. 

Count (log scale) 

P
ro

ba
bi

lit
y 

(lo
g 

sc
al

e)
 


	SeaDuckCover_logo
	Sea Duck Survey Report FINAL Main Text
	Sea Duck Survey Report FINAL Appendix 1
	Sea Duck Survey Report FINAL Appendix 2

