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Abstract

Long-term, large-scale monitoring of wildlife populations is an integral part of

conservation research and management. However, some traditional monitor-

ing protocols lack the information needed to account for sources of measure-

ment error in data analyses. Ignoring measurement error, such as partial

availability, imperfect detection, and species misidentification, can lead to mis-

characterizations of population states and processes. Accounting for measure-

ment error is key to robust monitoring of populations, which can inform a

wide variety of decisions, including harvest, habitat restoration, and determi-

nation of the legal status of species. We undertook an effort to retroactively

minimize bias in a large-scale, long-term monitoring program for marine birds

in the Salish Sea, Washington, USA, by conducting an auxiliary study to

jointly estimate components of measurement error. We built a novel model in

a Bayesian framework that simultaneously harnessed human observer and photo-

graphic data types to produce estimates necessary to correct for the effects of par-

tial availability, imperfect detection, and species misidentification. Across all

31 species identified in photographs, both observers had instances of

undercounting and overcounting birds but tended to undercount (observers

undercounted totals across all species on 69.3%–78.9% of transects). We estimated

species-specific correction factors that can be used to correct both historical and
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future counts from the Salish Sea survey, which has been running since 1992.

Our novel modeling framework can be applied in other multispecies monitoring

contexts where minimal photographic data can be collected for the purposes of

correcting for measurement error in large-scale, long-term datasets.

KEYWORD S
aerial survey analysis, Bayesian statistics, imperfect detection, marine birds,
multispecies monitoring, species misidentification

INTRODUCTION

Robust estimates of population parameters obtained from
monitoring data are valuable for wildlife research and
management. However, robust estimates depend on
monitoring protocols and analytical approaches designed
to account for measurement errors. Raw count data from
population surveys frequently result in biased measures
of abundance as a result of such errors (Caughley, 1974;
Davis et al., 2022; Pollock & Kendall, 1987; Russell
et al., 1996; Samuel & Pollock, 1981). Ignoring measure-
ment error may lead to either over- or underestimation of
parameters, such as population abundance. Measurement
error can arise from multiple sources, including partial
availability, imperfect detection, or species misidenti-
fication. Partial availability occurs when animals flee from
observers before they are detected or exhibit other cryptic
behaviors (e.g., diving under water). Imperfect detection
occurs when observers fail to detect animals that are avail-
able. Finally, even when individuals of a species are
counted accurately, they may be misidentified as members
of another species (Miller et al., 2011). Often, these pro-
cesses occur simultaneously during data collection and
may not be readily apparent to observers. A variety of sur-
vey methods and corresponding statistical models, such as
detection/non-detection data and occupancy modeling
(MacKenzie et al., 2002; Miller et al., 2011) or repeated
count data and N-mixture models (Royle & Nichols, 2003),
may be adopted to account for such measurement errors.

Monitoring across large geographic areas is often
conducted through aerial surveys (Briggs et al., 1985a;
Buckley & Buckley, 2000; Chabot et al., 2018; Siniff &
Skoog, 1964). Established methods for estimating obser-
vation error in aerial surveys include distance sampling
(Buckland et al., 2001), double-observer methods (Cook
& Jacobson, 1979), simultaneous observations from mul-
tiple platforms, such as plane and ship (Briggs et al.,
1985b), or estimation of correction factors using compari-
sons of observed aerial counts to a known number of
decoys (Frederick et al., 2003; Strobel & Butler, 2014).
However, each of these methods has potential draw-
backs, including additional assumptions or higher

resource (e.g., time, money) demands. Distance sampling
is a useful method but can be challenging to implement
in aerial surveys because observers must record exact dis-
tances or distance bins in addition to counting and identi-
fying species, which is often not feasible for large groups
composed of multiple species (e.g., Davis et al., 2022); fur-
ther, distance sampling cannot directly accommodate
partial availability. Double observer methods and counts
from multiple platforms are typically more expensive, do
not address partial availability and can, for some species,
be difficult to implement in practice (Briggs et al., 1985b;
Pollock & Kendall, 1987; Samuel & Pollock, 1981). Using
decoys to develop correction factors can have limited
applicability if decoys do not reasonably mimic the
behaviors of live animals.

Photographs taken from aerial platforms are a prom-
ising approach, especially as autonomous aerial vehicles
become more readily available and affordable. As photo-
graphs allow for identifying and counting species without
a time limit, these methods may eliminate or substan-
tially reduce measurement error associated with imper-
fect detection and species misidentification. However,
long-term collection and analysis of aerial photographs
currently tends to be more costly and time-intensive than
observer-led surveys and can be logistically prohibitive
for large landscapes (Bayliss & Yeomans, 1990; Béchet
et al., 2004; Watson, 1969). Using autonomous aerial sys-
tems not only tends to lower costs and risks to observer
safety, but it can also introduce challenges that existing
technology has not yet overcome, such as additional
sound disturbance, privacy issues, limitations on the
duration of flights (Wang et al., 2019), time-consuming
processing procedures, and high sensitivity to inclement
weather (e.g., Weiser et al., 2022). Additionally, photo-
graphs with poor contrast between animals and their
background, or including heavy cover that conceals ani-
mals, can create difficulties in identifying species or
detecting individual animals, which can lead to large
biases in abundance estimates (Brack et al., 2018; Siniff &
Skoog, 1964). Finally, photographs provide only a single
snapshot whereas human observers usually have several
seconds to observe animals, which may improve species
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identification. However, whereas photography alone may
have weaknesses as a monitoring method, coupling pho-
tographs with observer counts in aerial surveys can sup-
port estimation of reliable correction factors for observer
counts and can serve as a cost-effective approach to
improve observer-led wildlife monitoring (Bayliss &
Yeomans, 1990; Lamprey et al., 2020).

Numerous marine bird species are either residents of
or overwinter in the Salish Sea, an ecologically, economi-
cally, and culturally important ecosystem in the North
American portion of the Pacific flyway (Crewe et al.,
2012; Gaydos & Pearson, 2011). The Washington
Department of Fish and Wildlife has monitored winter-
ing marine birds in the US portion of the Salish Sea
annually since 1992 using strip-transect aerial surveys.
These surveys have provided consistent evidence for
declining abundances of multiple marine bird species
(Anderson et al., 2009; Bower, 2009; Vilchis et al., 2014).
Accurate abundance estimates are valuable for guiding
decision-making processes, for example, regarding harvest,
habitat restoration, and legal protection for declining spe-
cies. Additionally, marine birds have been identified as
important indicators of ecosystem health in the Salish Sea
(Bishop et al., 2016; Blight et al., 2015; Miller et al., 2015;
Pearson & Hamel, 2013), increasing the importance placed
on monitoring these species. Aerial surveys are a particu-
larly important method for monitoring marine birds in
this region because some sections of the Salish Sea are
difficult to access by other means (Vilchis et al., 2014).

Here, we present a novel model designed to correct
for measurement error in aerial survey counts of marine
birds. Our model integrates observer and photographic
data collected simultaneously during a one-time aerial
survey and is designed to account for several sources of
measurement error, including partial availability, imper-
fect detection, and species misidentification. We applied
the model to develop correction factors that can be used
to correct counts from both past and future aerial sur-
veys. Our model can be applied to any monitoring situa-
tion in which limited photographic data can be collected,
simultaneously with observer counts, for the purpose of
calculating correction factors that can then be used to
correct a larger dataset of observer counts.

METHODS

Data collection

Data collection from a high-wing de Havilland DHC-2
aircraft on floats occurred over 5 days in March 2012 in a
portion of the Salish Sea, Washington, USA (48� N,
123� W), known to contain a high diversity of

overwintering marine bird species. Surveys were designed
using a strip transect method with a strip width of 50 m on
the left side of the plane. A 0.64-cm poly line tied to the
wing strut at 33� and the edge of the floats at 58� created
visual boundaries for the transect. The aircraft flew at a
speed of 157–167 km/h at an altitude of about 61 m; the
plane flew directly into the wind to maintain a forward ori-
entation. Each transect was about 2 km long and took, on
average, 44 s to complete. A total of 625 transects were
flown over the 5-day study, capturing 175,680 photographs.

Two experienced observers (17 and 15 years of experi-
ence for observers 1 and 2, respectively) sat in the middle
and rear seats on the left side of the aircraft, and the air-
craft landed once per day for observers to switch seats.
Observers recorded the number of birds detected and
identified each bird to the lowest taxonomic group possi-
ble (usually species). Observers did not communicate
with each other during data collection and were visually
separated by an opaque divider. The observer in the mid-
dle seat had a slightly larger window than the observer in
the rear seat; only the middle seat is used during standard
surveys. Observers recorded an index of glare and the
Beaufort sea-state during surveys. However, we did not
include either of these variables in our analyses because
glare had negligible variation across transects, and
Beaufort sea-state varied within transects, which were
our unit of analysis.

Meanwhile, a Canon EOS 5D Mark II equipped with
a Canon EF 70-200 mm f/2.8 L IS USM lens set to
200 mm, attached high on the wing strut to eliminate
vibrations from the propeller, captured photographs of
birds. This forward-facing camera took continuous photo-
graphs at 3.9 frames per second imaging the transect strip
from 250–270 m ahead of the aircraft to 500–540 m
ahead, often capturing the same birds in multiple images.
An additional camera, the point-of-view camera, was
mounted to photograph the transect at the same time
as the observers viewed the same section of transect.
To delineate the 50-m-wide transect strip, both the
forward-facing and point-of-view cameras were cali-
brated to the transect strip at the start of each survey day
by flying at various altitudes above and parallel to
straight highway and railway lines positioned in the same
direction as the wind. The aircraft flew two passes into
the wind and parallel to the road or railway and took
photographs with both cameras when the aircraft was fly-
ing level (with vertical, lateral, and longitudinal axes of
0�), and when the road or railway matched the outer
edge of the aircraft float (58�) or a marking on the wing
strut delineating the outer boundary of the transect strip
(34.5�). The positions of the inner and outer boundaries
based on the imaged road or railway lines were then
transposed on each photograph taken during that survey
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day. The point-of-view camera was designed to capture
the area simultaneously seen by observers and the same
section of transect the forward-facing camera captured
(aircraft speed could be used to pair forward-facing and
point-of-view camera images; the point-of-view camera
captured the same section of transect 6–8 s following
the forward-facing camera depending on the speed
of the plane). However, the field of view from the
point-of-view camera proved to be different from that of
observers (the camera was aimed abeam of the aircraft,
i.e., perpendicular to the flight direction of the aircraft,
while the observers could see abeam as well as behind
and ahead), limiting its usefulness. Therefore, we did not
use the point-of-view camera in the analysis. We do
not refer to the point-of-view camera further; hereafter,
“camera” refers to the forward-facing camera only. The
in-flight observers synchronized their watches with
the clocks on the cameras and GPS to allow for accurate
image matching to the observer records.

An independent observer, not present on any of the
flights, counted and identified to the lowest taxonomic
group possible (usually species) each bird in each photo-
graph from the camera. This observer could identify spe-
cies from multiple angles using multiple photographs.
We used data from 321 of the 625 completed transects for
analyses. As the focus of the study was to derive correc-
tion factors for sea ducks (Tribe Mergini), transects
were randomly selected from a group where the
observers recorded sea ducks or where the transects
were over habitats used by sea ducks. In addition, ran-
domly selected transects from this group were priori-
tized such that all Beaufort sea states and glare
categories were represented. See Evenson et al. (2013)
for full details on data collection, including camera
placement and photo processing.

Analytical approach

We assume that the bird species composition and abun-
dance data captured by the camera represent the popula-
tion of interest. Some small differences between the true
composition and abundance and what was observed in
the photographs may occur because foraging marine
birds dive (independent of a response to the plane) and,
thus, are not always available, and because 100% of all
birds in the photographs could not be identified to spe-
cies. By contrast, the observer data potentially contained
multiple sources of measurement error. We identified
three sources of measurement error: (1) movement of
birds in response to the plane, (2) misidentification
of species, and (3) imperfect detection of birds.
Movement in response to the plane may not only include

diving or flying out of the transect but may also include
flying into the transect or surfacing after the camera
passed over their location. Species misidentification
occurs if an observer detects an individual but incor-
rectly identifies it. Imperfect detection of birds occurs
if an observer misses an entire group of one or more
individuals, or if they under- or overcount the number
of individuals in a detected group. Many marine
birds form large and mixed-species groups during the
winter, and some species have quite similar physical
characteristics, for example, Common Goldeneye
(Bucephala clangula) and Barrow’s Goldeneye (Bucephala
islandica), which may contribute to imperfect detection or
misidentification.

Birds in photographs could not always be identified to
species (~7% of marine birds, excluding gulls and scaup,
could not be identified to species). Because the photo-
graphic data were used as truth in the analysis, this limited
our ability to fully account for species misidenti-
fication. To develop species-specific abundances
despite this limitation, we allocated the individuals in
species groups identified in photographs to appropriate
species in proportion to their occurrence in the photo-
graphic detections that were identified to species across
the entire dataset (Table 1; Conn et al., 2012). For
example, if 450 Common Goldeneye, 50 Barrow’s
Goldeneye, and 200 unclassified goldeneyes were
recorded in photographs, 450= 50+ 450ð Þ = 90% (180) of
the unclassified goldeneyes would be allocated to the
count of Common Goldeneye and the remainder to
Barrow’s Goldeneye. In this way, we eliminated groups
recorded as “unclassified goldeneye” in the dataset. For
the observer data, we left counts in species groups
unchanged. The model then dealt with these as misiden-
tifications using the methods described below. The
assumption implicit in our approach—that the relative
abundance of unidentifiable individuals within species
groups is proportional to the relative abundance of identi-
fiable individuals within species groups in photographs—
may not be perfectly met, and, therefore, we ran two ana-
lyses: a taxonomically fine-filtered analysis and a taxo-
nomically coarse-filtered analysis. In the taxonomically
coarse-filtered analysis, we defined species groups to a
higher taxonomic level (e.g., “goldeneye”) rather than
assigning them to species as described above.
Additionally, given challenges with identification and
the goals of the monitoring program, gulls (likely
Larus spp. and Chroicocephalus spp. in the Salish Sea
in winter) were not identified beyond species group
even in the fine-filtered analysis. We also treated
scaup, including Greater Scaup (Aythya marila) and
Lesser Scaup (Aythya affinis), as a single group given
the challenges in distinguishing them.

4 of 15 BRUSA ET AL.
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TAB L E 1 Species and species groupings of marine birds identified from photographs taken during aerial surveys in the Salish Sea,

Washington, USA.

Species (i.e.,
fine-grained)

Species group
(i.e., coarse-grained) Scientific name Counts

Ancient Murrelet Alcida Synthliboramphus antiquus 0, 6, 1

Common Murre Alcid Uria aalge 29, 40, 63

Marbled Murrelet Alcid Brachyramphus marmoratus 51, 9, 104

Pigeon Guillemot Alcid Cepphus columba 24, 34, 88

Rhinoceros Auklet Alcid Cerorhinca monocerata 103, 89, 377

Unclassified alcidb Alcid NA 6, 4, 4

Unclassified small alcidb Alcid NA 0, 1, 2

Unclassified murreletb Alcid NA 0, 8, 26

Brant Brant Branta bernicla 1566, 1195, 1190

Bufflehead Bufflehead Bucephala albeola 1196, 991, 1659

Double-crested Cormorant Cormorant Phalacrocorax auritus 6, 15, 22

Pelagic Cormorant Cormorant Phalacrocorax pelagicus 7, 9, 66

Unclassified cormorantb Cormorant NA 50, 36, 65

American Wigeon Dabbling duckc Mareca americana 496, 258, 1055

Eurasian Wigeon Dabbling duck Mareca penelope 0, 0, 10

Mallard Dabbling duck Anas platyrhynchos 22, 10, 66

Northern Pintail Dabbling duck Anas acuta 90, 2, 138

Barrow’s Goldeneye Goldeneye Bucephala islandica 29, 19, 30

Common Goldeneye Goldeneye Bucephala clangula 90, 32, 174

Unclassified goldeneyeb Goldeneye NA 68, 44, 61

Horned Grebe Grebe Podiceps auritus 55, 41, 221

Red-necked Grebe Grebe Podiceps grisegena 46, 7, 52

Western Grebe Grebe Aechmophorus occidentalis 254, 194, 399

Unclassified grebeb Grebe NA 0, 4, 9

Gulld Gull NA 515, 422, 726

Harlequin Duck Harlequin Duck Histrionicus histrionicus 36, 21, 74

Long-tailed Duck Long-tailed Duck Clangula hyemalis 320, 260, 402

Common Loon Loon Gavia immer 59, 25, 89

Pacific Loon Loon Gavia pacifica 3, 8, 18

Red-throated Loon Loon Gavia stellata 51, 84, 98

Unclassified loonb Loon NA 41, 22, 121

Common Merganser Merganser Mergus merganser 1, 2, 1

Red-breasted Merganser Merganser Mergus serrator 57, 19, 104

Unclassified merganserb Merganser NA 4, 62, 20

Ruddy Duck Ruddy Duck Oxyura jamaicensis 26, 5, 30

Scaupe Scaup NA 90, 75, 124

Black Scoter Scoter Melanitta americana 0, 0, 2

Surf Scoter Scoter Melanitta perspicillata 691, 560, 993

White-winged Scoter Scoter Melanitta deglandi 129, 92, 450

Unclassified scoterb Scoter NA 158, 171, 107

(Continues)
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Camera

We summarized observations from the camera including
birds flying and birds on the surface of the water, giving
us a count, FFji, for transect j and species i. We assumed
the camera contained no measurement error and cap-
tured the true abundance of birds available within the
field of view. To estimate species composition in each
transect, j, we described FFji, using a multinomial distri-
bution as shown in Equation (1) (Figure 1):

FFji �multinomial πi,
X

i
FFji

� �
, ð1Þ

where πi is the bird species composition pre-aircraft con-
tact (i.e., the proportion of birds on the transect that are
members of each species i), and

P
iFFji is the total bird

abundance (i.e., the summation of the data across spe-
cies, i, within each transect, j). We described the
species-wide bird abundance on transect j in Equation (2)
using a Poisson distribution with mean species-wide bird
abundance, Λ:

X
i
FFji � Poisson Λð Þ: ð2Þ

We used the forward-facing camera data to estimate πi
and Λ. We parameterized species composition as:
πi ¼ λi=Λ, where λi is the expected species-specific mean
abundance. We constrained Λ¼Σiλi, which implies
Equation (3):

FFji �Poisson λið Þ: ð3Þ

The following subsections describe a method to estimate
the three parameters associated with each type of
measurement error (i.e., movement, species misidenti-
fication, and imperfect detection). However, we found
that disentangling these three parameters can prove
difficult in practice. Therefore, we follow the presenta-
tion of that analytical method with a condensed
method that estimates those three parameters as one
parameter to capture the total measurement error gen-
erated from movement, imperfect detection, and spe-
cies misidentification.

Movement

The observer’s field of view is on the side of the air-
craft; thus, observers count birds after they come into
contact with the aircraft (i.e., are nearly or directly
below the aircraft). Individual birds may move into or
out of view at random or due to a behavioral res-
ponse to the aircraft. The available latent abundance
for observers is, therefore, an outcome of species-wide
abundance and a movement process. We used
Equation (4) to describe available latent species-wide
abundance, ΣiNji, as the summation of individuals cap-
tured by the camera for each species i and transect j after
aircraft contact:

TAB L E 1 (Continued)

Species (i.e.,
fine-grained)

Species group
(i.e., coarse-grained) Scientific name Counts

Unclassified duckb f NA 0, 75, 79

Unclassified seabirdb f NA 11, 0, 79

Note: To account for unclassified birds even in the reference (i.e., camera) data, we conducted two analyses, a taxonomically fine-grained analysis and a
coarse-grained analysis. The classes in the fine-grained and coarse-grained analyses are shown, along with scientific names for species. Counts are presented as
observer 1, observer 2, camera, with camera counts in boldface.
aAlcids are members of the family Alcidae.
bIn the taxonomically fine-grained analysis, counts of the following groups were allocated proportional to the counts for individuals within the group that were
identified to species, as follows: “unclassified alcid” to all alcids; “unclassified small alcid” to all murrelets; “unclassified murrelet” to all murrelets;
“unclassified cormorant” to all cormorants; “unclassified goldeneye” to all goldeneyes; “unclassified grebe” to all grebes; “unclassified loon” to all loons; and

“unclassified merganser” to all mergansers. The species group “unclassified duck” was allocated proportionally across all ducks (i.e., Bufflehead, all dabbling
ducks, all goldeneyes, Harlequin Duck, Ling-tailed Duck, all mergansers, Ruddy Duck, scaup, and all scoters). The species group “unclassified seabird” was
allocated proportionally across all other species.
cDabbling ducks are members of the family Anatidae, subfamily Anatinae.
dGiven challenges with identification and the objectives of the monitoring program, we grouped all gulls (family Laridae), likely including Larus spp. and

Chroicocephalus philadelphia, in both the fine-grained and coarse-grained analyses.
eScaup are composed of two species, Greater Scaup (Aythya marila) and Lesser Scaup (Aythya affinis), but because of challenges in distinguishing them, they
were never identified to species in the survey data.
fIn the taxonomically coarse-grained analysis, counts of the following groups were allocated proportionally to species groups as follows: “unclassified duck” to
Bufflehead, dabbling ducks, goldeneyes, Harlequin Duck, Long-tailed Duck, mergansers, Ruddy Duck, scaup, and scoters; “unclassified seabird” to all species

groups.
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ΣiNji � Poisson Λ× αð Þ, ð4Þ

where α is the mean of the species-specific movement, αi,
which captures movement rates of individual species.
The support for the movement rate is 0 to ∞, which
allows for individuals to move both in and out of the
observers’ field of view, where α <1 indicates more birds
moving out of the field of view than in, α >1 indicates
more birds moving into the field of view than out, and α
= 1 indicates the same magnitude of birds moving in and
out of view.

Species misidentification

Observers recorded the counts of each species i, which
required correctly identifying individuals to species.
Despite rigorous training and experience, species
misidentification can occur during the observation pro-
cess (Johnston et al., 2015). For a given species i, the
observed number of individuals contains the number of cor-
rectly identified individuals of species i in addition to false
positives (i.e., individuals from species k misidentified by
the observer as species i). There may also be individuals
of species i misidentified as species k. Again, we consid-
ered the true bird species composition, π, and we defined

the bird species composition seen by the observers as ϕ.
We can use the conditional probability (ϕk j πi) to esti-
mate how many individuals of species i were misi-
dentified as species k. These conditional probabilities are
contained within a square i× k matrix, where elements
along the diagonal are the probabilities of correctly iden-
tifying species i, (ϕk¼i j πi), and off-diagonal elements con-
tain the misidentification probabilities (ϕk≠i j πi). We use
Equation (5) to describe this observational process with a
multinomial distribution:

Cjik �multinomial ϕkjπið Þ,Nji
� �

, ð5Þ

where the species-specific available latent abundance,
Nji, for each species i in transect j is distributed into the
elements Cjik, which contain the additional dimension k.
We define this latent value, Cjik, as the scalar elements of
the confusion matrix for each transect j, representing the
number of individuals of species i that were correctly
identified (diagonal elements, k= i) and incorrectly iden-
tified (off-diagonal elements, k≠ i). Using the i× k con-
fusion matrix, the sum of column k (i.e.,

P
iCjik) is the

number of individuals of species k recorded under perfect
detection, including both species correctly identified
(k¼ i, diagonal element) and misidentified (k≠ i,

F I GURE 1 Directed acyclic graph showing relationship between in-sample data and out-of-sample correction. Boxes are data, and

dashed circles are parameter values. Solid arrows represent relationships between data and parameters. Dashed arrows indicate information

used to correct the out-of-sample data.
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off-diagonal elements), which might also include individ-
uals counted by the aerial observers that were not cap-
tured by the camera. Then, we sum across columns k= 1,
…, K species (i.e.,

P
k

P
iCjik), which collapses the

species-specific abundances to the species-wide latent
abundance for each transect j. Here,

P
k

P
iCjik is equiva-

lent to
P

iNji, as misidentification only changes the
species-specific magnitudes but not the species-wide
value.

Imperfect detection

In addition to misidentification, observers may also
undercount or overcount the number of individuals in
their field of view due to imperfect detection. We can
describe this process using a binomial distribution as in
Equation (6); we use i to denote true species identifica-
tion from the photographs and k to denote observed spe-
cies identification from real-time observations:

X
k
OBSjko � binomial po

X
i
Nji

� �
, ð6Þ

where
P

kOBSjko are data containing the observed bird
species-wide counts for each observer o and transect j.
Detection probability, po, is the mean observer- and
species-specific detection probability; and

P
iNji (i.e.,P

k

P
iCjik) is the species-wide number of individuals. By

including movement, imperfect detection, and misidenti-
fication, the model can account for both undercounting
and overcounting individual birds.

Model identifiability

As noted above, the data and the structure of the model
did not allow for separately estimating movement rate
and detection probability. However, the mathematical
product of these parameters, α× po ¼ εo, is estimable, giv-
ing us the modified species-wide observation process
illustrated in Equation (7):

X
k
OBSjko �Poisson Λ× εoð Þ: ð7Þ

Here, we summed the observer data across species and
described the data with a Poisson distribution. The
expected value of the distribution is the product of
the expected bird species-wide abundance, movement
rate, and detection probability. We generalize the combi-
nation of movement and detection to estimate εjo specific
to each transect and observer, allowing us to account for

potential differences in εo due to the seat assignment
(middle or rear) of observer, o, during transect, j, as
described by Equation (8):

log εjo
� �¼ εo + β1 × seatjo, ð8Þ

where εo is the estimate for observer o when in the rear
seat, β1 is the additive effect of being in the middle seat,
and seatjo is a binary indicator (1 for middle seat, 0 for
rear seat) for each transect j and observer o.

We cannot fully estimate the confusion matrix and
associated conditional probabilities owing to differences
in the fields of view of the observers compared to the
camera and, therefore, the inability to directly compare
species identification of birds observed in real time and
birds captured by the camera. However, we simply
corrected for misidentification by specifying it as a rate,
ϕok¼oi=πi, the rate at which species i is correctly identi-
fied, by observer o (ϕok¼i=πi ¼ 1 when no misidenti-
fication occurs and ϕok¼i=πi ≠ 1 when misidentification
occurs). Thus, we used Equation (9) to estimate the
observed bird species composition, ϕok, with a multino-
mial distribution and observer data:

OBSjko �multinomial ϕok ,
X

k
OBSjko

� �
, ð9Þ

where ϕok is the proportion of species identified by an
observer, o, as species, k.

Out-of-sample correction

We can use the estimated parameters (i.e., εo,πi,ϕok) to
correct for out-of-sample observations made when photo-
graphic data do not exist (Figure 1). We used
Equation (10) to model species-specific observation data
with a Poisson distribution:

OBSjko �Poisson λi ×ϕo,k¼i=πi × εo
� �

: ð10Þ

Therefore, by combining the new observation data with
the estimated parameters, we can calculate the parameter
of interest, λi. The estimated correction factor, CF, for
each species and observer is cCFio = ϕo,k¼i=πi × εo.

Parameter estimation

We fit our model using a Markov Chain Monte Carlo
(MCMC) approach (Casella & George, 1992; Gelfand &
Smith, 1990; Geman & Geman, 1993). We fit the
model in the R package NIMBLE version 0.6-10
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(de Valpine et al., 2017) in R version 4.0 (R Core
Team, 2020) with 3 chains, a burn-in of 10,000 itera-
tions, and a sampling period of 20,000 iterations. We
used the R packages coda (Plummer et al., 2006),
ggmcmc (Fern�andez-i-Marín, 2016), and MCMCvis
(Youngflesh, 2018) to inspect model convergence using trace
plots, density plots, and Gelman–Rubin statistic, bR, values
(Gelman & Rubin, 1992). We used vague priors, includ-
ing the log of λi �Normal 0,100ð Þ, ϕok �Dirichlet 1ð Þ,
εo �Normal 0,100ð Þ, and β1 �Normal 0,100ð Þ.

Model testing

Although the photographs provided a useful approxima-
tion of the true number and species composition of birds,
using photographs does not capture truth as well as
known animal numbers, which can be accomplished
using captive animals (Zabel et al., 2023). However, we
can use simulations to similarly test our ability to accu-
rately estimate the species-specific number of birds,
which has an additional benefit of out-of-sample valida-
tion, which is absent when using captive animals. We
used simulated data to evaluate the model’s ability to cor-
rectly return parameter estimates for out-of-sample pre-
dictions (see Appendix S1 for full description of model
testing methods). For the simulation of observer data, we
simplified the model to only include one observer and
did not include a seat assignment covariate. We gener-
ated a parameter value for the true movement while also
generating an offset (between 1 and 1.5) that allowed for
a larger field of view for observers compared to the cam-
era. Similarly, we generated probabilities of misidenti-
fication (pairwise values across all species) and detection
(one value assigned for all species) and the true species
composition for each simulated transect. We used the
generated misidentification values to construct a species
× species confusion matrix for each transect. Using the
generated values for true movement and true composi-
tion, we simulated species-specific data for the camera.
Data and model code for the simulations and empirical
model are provided at https://doi.org/10.5281/zenodo.
11111632.

RESULTS

Summed across all 321 transects, the camera captured
55,000 photographs containing 9029 individual marine
birds, whereas observer 1 recorded 6434 birds, and
observer 2 recorded 5021. Thirty-one marine bird species
were identified across observers and photographs
(Table 1). The total number of individuals per species

captured on the camera across all transects ranged from
2 (Black Scoter, Melanitta americana) to 1644
(Bufflehead, Bucephala albeola). The camera captured
1612 groups of marine birds across all transects, ranging
from 1 to 518 birds per group with a mean of 5.60 birds
per group (SD = 19.16). Group size was left skewed: 79%
of groups had ≤5 birds and 91% had ≤10 birds. Including
only birds that could be identified to species, 27% of
groups captured by the camera included more than one
species.

Both observers tended to undercount birds com-
pared to the camera (Figure 2); observer 1 recorded a
mean of 78.9% (SD = 1.2%) of the birds caught on the
camera per transect, and observer 2 recorded a mean of
68.7% (SD = 1.0%). However, both observers counted
more birds than caught on the camera on some tran-
sects (28.3% of the transects for observer 1 and 25.2% of
the transects for observer 2). The species with the
smallest difference in total counts between observer
and camera was Barrow’s Goldeneye (observer 1 total
was 96.7% of the camera total) and Brant (Branta
bernicla; observer 2 total was 100.4% of the camera
total). The species with the greatest difference in
counts between observer and camera were Pelagic
Cormorant (Phalacrocorax pelagicus; observer 1 total
was 10.6% of the camera total) and Northern Pintail
(Anas acuta; observer 2 total was 1.4% of the camera
total).

The results from our simulations indicated that our
model was able to capture the data-generating parame-
ters accurately. The simulations resulted in a 100% con-
vergence rate for ε with minimal bias (<−0.01%,
interquartile range [IQR]=−0.05 to 0.04), a 96.2% con-
vergence rate for λ with minimal bias (0.01%, IQR=

−0.06 to 0.08), and a 98.2% convergence rate for Λ with
minimal bias (<0.01%, IQR=−0.05 to 0.07).

Based on model diagnostics and general agreement
between our corrected counts and our camera counts,
our model appeared to perform well on the empirical
dataset. Overall diagnostics indicated that our models
converged; although, we had bR estimates >1.1 for
Ancient Murrelet cCF and Black Scoter cCF (Appendix S2:
Table S1), which had very few observations (Table 1).
Using the data collected from one camera and two
observers over 321 transects, the fine-grained model
required <1min to compile and build in NIMBLE and
42min and 33.27MB of memory to run. Correction factor
estimates varied across species/species groups and
between observers (Appendix S2: Table S1; Figure 3). For
most species/species groups, our calculated corrected
counts (calculated by multiplying the inverse of our cor-
rection estimates from our model by the observer counts)
were very similar to the counts from the camera. As one
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F I GURE 2 Observer count accuracy per species. Points display the count captured by the camera subtracted from each observer’s
count for each species for each group of birds observed. Only groups that were captured by the camera were included.
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would expect, the model tended to produce correction
estimates that yielded corrected counts proportionally
closer to the counts of the camera for species with
larger sample sizes. The seat position of the observer
had a negligible effect on detection/species identifica-
tion (taxonomically fine-grained analysis: β1 = −0.001,
95% credible interval=−0.04 to 0.04; taxonomi-
cally coarse-grained analysis: β1 = −0.002, 95% credible
interval=−0.04 to 0.03).

DISCUSSION

Comparing detected animals to known numbers of ani-
mals can be an effective method for estimating measure-
ment errors and adjusting abundance estimates to
improve the accuracy of wildlife monitoring data
(Bayliss & Yeomans, 1990; Caughley et al., 1976; Pearse
et al., 2008; Zabel et al., 2023). Our results suggest that
uncorrected counts from aerial surveys of marine birds in

F I GURE 3 Model performance for count corrections: (a) raw counts from the observers or camera (points); (b) counts from the camera

(points) and the estimated abundances produced by our model (triangles) for select species. Error bars on estimates indicate 95% credible

intervals. The y-axis is on logarithmic scale.
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the Salish Sea include notable measurement error
resulting from some combination of animal movement in
response to the plane, imperfect detection, and species
misidentification. Comparing real-time observations of
bird counts from aerial surveys, especially with multiple
species, to counts from photographs taken of the area in
front of the plane is a complicated process because ani-
mal movement, detection, and species identification can-
not be separately estimated. Therefore, it is impossible to
determine whether an individual captured by the camera
but not by an observer resulted from the bird not being
available for detection, the observer not detecting the
bird, or the observer detecting the bird but identifying it
as the incorrect species. As is common in other studies
investigating observation errors from aerial surveys
(Alisauskas & Conn, 2019; Caughley et al., 1976; Pearse
et al., 2008), observers counted fewer individuals than
were in the population of interest (i.e., in the photo-
graphs from the camera), and measurement error varied
by species and observer. Applying the correction factors
that we estimated to the observer counts yielded accurate
estimates based on comparison with the camera counts.

At its most basic level, our study demonstrates that
the ability to detect and correctly identify marine bird
species from aircraft varies both across observers and spe-
cies, reinforcing that estimates correcting for biases must
account for, at minimum, these two factors. Although
multiple methods to account for imperfect detection of
wildlife in aerial surveys have emerged, many of these
approaches either do not mimic the actual field condi-
tions under which monitoring data are collected, do not
account for partial availability, or fail to account for spe-
cies misidentification (Davis et al., 2022). Given the abil-
ity of our model to provide accurate correction factors for
the species in the dataset, our model results can be used
to adjust both future and historical counts of marine
birds in the Salish Sea aerial survey by the same
observers under the assumption that observer perfor-
mance is constant over time. For surveys with the same
observers, marine bird wintering counts can be retroac-
tively adjusted to improve the ability of the survey to cap-
ture true abundance while integrating uncertainty in the
observation process into the abundance estimates.
However, observers will change over time, as will the
abilities of individual observers (Sauer et al., 1994),
underscoring the value of repeating the simultaneous col-
lection of observer and photographic data as funding
allows, when staff turnover occurs, or when conditions
that may influence detection are altered (e.g., change of
aircraft platform). As our correction-factor results are
specific to each observer, further investigation with many
different observers could elucidate the magnitude of
observer effect.

Although the method we have developed can provide
accurate correction factors for most of the species
recorded in the survey, the method has limited value
when species are rare or highly sensitive to plane pres-
ence. Given that the correction is multiplicative, the
models we present cannot provide an estimate for
the true number of birds present when the observer
count for a species is zero. In the data for the current
study, observers did not record any observations of Black
Scoter or Eurasian Wigeon (Mareca penelope), but the
camera captured both. From the surveys alone, one could
erroneously but reasonably conclude that neither of these
species were present on the transects. Black Scoter was
only captured by the camera on one transect, and one
observer may have seen the same animal and identified it
as an unknown scoter. Eurasian Wigeon were identified
in mixed groups with American Wigeon, which substan-
tially outnumber the Eurasian Wigeon. Others have also
noted that less numerous species in mixed groups may
receive disproportionately lower counts or may not be
recognized as separate species (Gilbert et al., 2021).
Additional surveys might have provided nonzero detec-
tions and additional captures of these rarely sighted spe-
cies wintering in the Salish Sea, which could produce
more accurate abundance estimates.

Although our correction estimates are specific to the
Salish Sea, specific characteristics of the survey
(e.g., aircraft used and altitude flown), observers, and spe-
cies recorded during the surveys, our approach has
potential to be useful for other monitoring programs,
especially those using multiple observers and in study
regions where the ability to account for imperfect detec-
tion using double observer methods or multiple survey
platforms is logistically prohibitive. Researchers can
mimic our field approach and apply our model to their
own data to estimate their own correction factors. Several
expansions and refinements are also possible. Future
applications may benefit from using an array of
point-of-view cameras that accurately capture the same
field of view as the observers. This source of data would
allow for the development of a detection model that
accounts for group size. As demonstrated in other studies
investigating detection probabilities in aerial surveys
(Clement et al., 2017; Cook & Jacobson, 1979; Gilbert
et al., 2021; Pearse et al., 2008), group size can affect the
detection probabilities of observers. However, achieving
an exactly equivalent field of view between observers and
cameras could be difficult in practice because observers
would need to maintain fixed head and eye positions
throughout each transect. Future applications of
our general approach could also implement artificial
intelligence-based software for wildlife counts from
photographs to reduce image processing time;
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however, this approach might not work well for
mixed-species flocks (Marchowski, 2021).

Advances in plane-based or autonomous aerial
vehicle-based photography, coupled with artificial
intelligence-based analysis of images, have the potential
to transform aerial monitoring of wildlife (e.g., Chabot
et al., 2018; Marchowski, 2021; Qian et al., 2023). Removing
the reliance on plane-based observers with photographic
images that can be saved and revisited over time as technol-
ogy improves could address many of the challenges of
observer-based surveys. However, to be viable, surveys of
this type will have to be of sufficiently high quality and low
cost, and the timeline for development of the technology
necessary to facilitate such surveys is uncertain. In
multispecies systems, this timeline is likely to be extended.
Further, using autonomous aerial vehicle-based photogra-
phy for aquatic birds can come with additional challenges
of disturbing flying birds (e.g., birds potentially fleeing the
area or attacking the vehicles) and requiring personnel
highly trained in both target species biology and autono-
mous aerial vehicle operation (Marchowski, 2021).

Many wildlife population and community analyses
require accurate long-term monitoring of abundance to
inform species management or address scientific hypoth-
eses (Nichols & Williams, 2006; Tinkle, 1979). Inaccurate
abundance estimates can lead to poor management deci-
sions or erroneous scientific conclusions (Elliot et al.,
2020; Ward-Paige et al., 2010). By means of a small sup-
plemental study using cameras to compare observed
counts to known counts from photographs, we have shown
that it is possible to account for multiple sources of mea-
surement error, including animal movement, imperfect
detection, and species misidentification. Additionally, we
have demonstrated how to apply estimated correction fac-
tors retroactively to existing data. Our results contribute to
a growing recognition of the need for tools to improve
abundance estimates from aerial-based survey counts. The
ability to maintain long-term aerial monitoring efforts while
simultaneously improving our confidence in the estimates
and trends obtained from them is imperative for the man-
agement of wildlife populations.
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