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Abstract 32 

Long-term, large-scale monitoring of wildlife populations is an integral part of conservation 33 

research and management. However, some traditional monitoring protocols lack the information 34 

needed to account for sources of measurement error in data analyses. Ignoring measurement 35 

error, such as partial availability, imperfect detection, and species misidentification, can lead to 36 

mischaracterizations of population states and processes. Accounting for measurement error is 37 

key to robust monitoring of populations, which can inform a wide variety of decisions, including 38 

harvest, habitat restoration, and determination of the legal status of species. We undertook an 39 

effort to retroactively minimize bias in a large-scale, long-term monitoring program for marine 40 

birds in the Salish Sea, Washington, USA by conducting an auxiliary study to jointly estimate 41 

components of measurement error. We built a novel model in a Bayesian framework that 42 

simultaneously harnessed human observer and photographic data types to produce estimates 43 

necessary to correct for the effects of partial availability, imperfect detection, and species 44 

misidentification. Across all 31 species identified in photographs, both of the two participating 45 

observers had instances of undercounting and overcounting birds but tended to undercount 46 

(observers undercounted totals across all species on 69.3% – 78.9% of transects). We estimated 47 

species-specific correction factors that can be used to correct both historical and future counts 48 

from the Salish Sea survey, which has been running since 1992. Our novel modeling framework 49 

can be applied in other multi-species monitoring contexts where minimal photographic data can 50 

be collected for the purposes of correcting for measurement error in large-scale, long-term 51 

datasets.  52 

 53 

  54 
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Introduction 55 

 Robust estimates of population parameters obtained from monitoring data are valuable 56 

for wildlife research and management. However, robust estimates depend on monitoring 57 

protocols and analytical approaches designed to account for measurement errors. Raw count data 58 

from population surveys frequently result in biased measures of abundance as a result of such 59 

errors (Caughley 1974, Samuel and Pollock 1981, Pollock and Kendall 1987, Russell et al. 1996, 60 

Davis et al. 2022). Ignoring measurement error may lead to either over- or underestimation of 61 

parameters, such as population abundance. Measurement error can arise from multiple sources, 62 

including partial availability, imperfect detection, or species misidentification. Partial availability 63 

occurs when animals flee from observers before they are detected or exhibit other cryptic 64 

behaviors (e.g., diving under water). Imperfect detection occurs when observers fail to detect 65 

animals that are available. Finally, even when individuals of a species are counted accurately, 66 

they may be misidentified as members of another species (Miller et al. 2011). Often, these 67 

processes occur simultaneously during data collection and may not be readily apparent to 68 

observers. A variety of survey methods and corresponding statistical models, such as 69 

detection/non-detection data and occupancy modeling (MacKenzie et al. 2002, Miller et al. 70 

2011) or repeated count data and N-mixture models (Royle and Nichols 2003) may be adopted to 71 

account for such measurement errors. 72 

Monitoring across large geographic areas is often conducted through aerial surveys 73 

(Siniff and Skoog 1964, Briggs et al. 1985a, Buckley and Buckley 2000, Chabot et al. 2018). 74 

Established methods for estimating observation error in aerial surveys include distance sampling 75 

(Buckland et al. 2001), double-observer methods (Cook and Jacobson 1979), simultaneous 76 

observations from multiple platforms, such as plane and ship (Briggs et al. 1985b), or estimation 77 
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of correction factors using comparisons of observed aerial counts to a known number of decoys 78 

(Frederick et al. 2003, Strobel and Butler 2014). However, each of these methods has potential 79 

drawbacks, including additional assumptions or higher resource (e.g., time, money) demands. 80 

Distance sampling is a useful method but can be challenging to implement in aerial surveys 81 

because observers must record exact distances or distance bins in addition to counting and 82 

identifying species, which is often not feasible for large groups composed of multiple species 83 

(e.g., Davis et al. 2022); further, distance sampling cannot directly accommodate partial 84 

availability. Double observer methods and counts from multiple platforms are typically more 85 

expensive, do not address partial availability and can, for some species, be difficult to implement 86 

in practice (Samuel and Pollock 1981, Briggs et al. 1985b, Pollock and Kendall 1987). Using 87 

decoys to develop correction factors can have limited applicability if decoys do not reasonably 88 

mimic the behaviors of live animals. 89 

Photographs taken from aerial platforms are a promising approach, especially as 90 

autonomous aerial vehicles become more readily available and affordable. As photographs allow 91 

for identifying and counting species without a time limit, these methods may eliminate or 92 

substantially reduce measurement error associated with imperfect detection and species 93 

misidentification. However, long-term collection and analysis of aerial photographs currently 94 

tends to be more costly and time-intensive than observer-led surveys and can be logistically 95 

prohibitive for large landscapes (Watson 1969, Bayliss and Yeomans 1990, Béchet et al. 2004). 96 

Using autonomous aerial systems tends to lower costs and risks to observer safety, but it can also 97 

introduce challenges that existing technology has not yet overcome, such as additional sound 98 

disturbance, privacy issues, limitations on the duration of flights (Wang et al. 2019), time 99 

consuming processing procedures, and high sensitivity to inclement weather (e.g., Weiser et al. 100 
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2022). Additionally, photographs with poor contrast between animals and their background or 101 

including heavy cover that conceals animals can create difficulties in identifying species or 102 

detecting individual animals, which can lead to large biases in abundance estimates (Siniff and 103 

Skoog 1964, Brack et al. 2018). Finally, photographs provide only a single snapshot whereas 104 

human observers usually have several seconds to observe animals, which may improve species 105 

identification. However, whereas photography alone may have weaknesses as a monitoring 106 

method, coupling photographs with observer counts in aerial surveys can support estimation of 107 

reliable correction factors for observer counts and can serve as a cost-effective approach to 108 

improve observer-led wildlife monitoring (Bayliss and Yeomans 1990, Lamprey et al. 2020). 109 

Numerous marine bird species are either residents of or overwinter in the Salish Sea, an 110 

ecologically, economically, and culturally important ecosystem in the North American portion of 111 

the Pacific flyway (Gaydos and Pearson 2011, Crewe et al. 2012). The Washington Department 112 

of Fish and Wildlife has monitored wintering marine birds in the United States portion of the 113 

Salish Sea annually since 1992 using strip-transect aerial surveys. These surveys have provided 114 

consistent evidence for declining abundances of multiple marine bird species (Anderson et al. 115 

2009, Bower 2009, Vilchis et al. 2014). Accurate abundance estimates are valuable for guiding 116 

decision-making processes, e.g., regarding harvest, habitat restoration, and legal protection for 117 

declining species. Additionally, marine birds have been identified as important indicators of 118 

ecosystem health in the Salish Sea (Pearson and Hamel 2013, Blight et al. 2015, Miller et al. 119 

2015, Bishop et al. 2016), increasing the importance placed on monitoring these species. Aerial 120 

surveys are a particularly important method for monitoring marine birds in this region because 121 

some sections of the Salish Sea are difficult to access by other means (Vilchis et al. 2014).  122 
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Here, we present a novel model designed to correct for measurement error in aerial 123 

survey counts of marine birds. Our model integrates observer and photographic data collected 124 

simultaneously during a one-time aerial survey and is designed to account for several sources of 125 

measurement error, including partial availability, imperfect detection, and species 126 

misidentification. We applied the model to develop correction factors that can be used to correct 127 

counts from both past and future aerial surveys. Our model can be applied to any monitoring 128 

situation in which limited photographic data can be collected, simultaneously with observer 129 

counts, for the purpose of calculating correction factors that can then be used to correct a larger 130 

dataset of observer counts. 131 

 132 

Methods 133 

Data collection 134 

Data collection from a high-wing de Havilland DHC-2 aircraft on floats occurred over 5 135 

days in March 2012 in a portion of the Salish Sea, Washington, USA (48° N, 123° W) known to 136 

contain a high diversity of overwintering marine bird species. Surveys were designed using a 137 

strip transect method with a strip width of 50 m on the left side of the plane. A 0.64-cm poly line 138 

tied to the wing strut at 33° and the edge of the floats at 58° created visual boundaries for the 139 

transect. The aircraft flew at a speed of 157-167 km/hour at an altitude of about 61 m; the plane 140 

flew directly into the wind to maintain a forward orientation. Each transect was about 2 km long 141 

and took, on average, 44 seconds to complete. A total of 625 transects were flown over the 5-day 142 

study, capturing 175,680 photographs. 143 

Two experienced observers (17 and 15 years of experience for observers 1 and 2, 144 

respectively) sat in the middle and rear seats on the left side of the aircraft, and the aircraft 145 
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landed once per day for observers to switch seats. Observers recorded the number of birds 146 

detected and identified each bird to the lowest taxonomic group possible (usually species). 147 

Observers did not communicate with each other during data collection and were visually 148 

separated by an opaque divider. The observer in the middle seat had a slightly larger window 149 

than the observer in the rear seat; only the middle seat is used during standard surveys. Observers 150 

recorded an index of glare and the Beaufort sea-state during surveys. However, we did not 151 

include either of these variables in our analyses because glare had negligible variation across 152 

transects, and Beaufort sea-state varied within transects, which were our unit of analysis. 153 

 Meanwhile, a Canon EOS 5D Mark II equipped with a Canon EF 70-200 mm f/2.8 L IS 154 

USM lens set to 200 mm, attached high on the wing strut to eliminate vibrations from the 155 

propeller, captured photographs of birds. This forward-facing camera took continuous 156 

photographs at 3.9 frames per second imaging the transect strip from 250-270 m ahead of the 157 

aircraft to 500-540 m ahead, often capturing the same birds in multiple images. The camera was 158 

calibrated to the transect strip at the start of each survey day. An additional camera, the point-of-159 

view camera, was designed to capture the area seen by observers simultaneous with observers. 160 

However, the field of view from this camera proved to be different from that of observers (the 161 

camera was aimed abeam of the aircraft while the observers could see abeam as well as behind 162 

and ahead), limiting its usefulness. We do not refer to the point-of-view camera further; 163 

hereafter, “camera” refers to the forward-facing camera. The in-flight observers synchronized 164 

their watches with the clocks on the cameras and Global Positioning System (GPS) to allow for 165 

accurate image matching to the observer records. 166 

An independent observer, not present on any of the flights, counted and identified to the 167 

lowest taxonomic group possible (usually species) each bird in each photograph from the 168 
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camera. We used data from 321 of the 625 completed transects for analyses. As the focus of the 169 

study was to derive correction factors for sea ducks (Tribe Mergini),transects were randomly 170 

selected from a group where the observers recorded sea ducks or where the transects were over 171 

habitats used by sea ducks. In addition, randomly selected transects from this group were 172 

prioritized such that all Beaufort sea states and glare categories were represented. See Evenson et 173 

al. (2013) for full details on data collection and processing. 174 

Analytical approach 175 

We assume that the camera bird species composition and abundance data represent the 176 

population of interest. Some small differences between the true composition and abundance and 177 

what was observed in the photographs may occur because foraging marine birds dive 178 

(independent of a response to the plane) and, thus, are not always available and because 100% of 179 

all birds in the photographs could not be identified to species. By contrast, the observer data 180 

potentially contained multiple sources of measurement error. We identified three sources of 181 

measurement error: 1) movement of birds in response to the plane, 2) misidentification of 182 

species, and 3) imperfect detection of birds. Movement in response to the plane may include 183 

diving or flying out of the transect but may also include flying into the transect or surfacing after 184 

the camera passed over their location. Species misidentification occurs if an observer detects an 185 

individual but incorrectly identifies it. Imperfect detection of birds occurs if an observer misses 186 

an entire group of one or more individuals or if they under- or overcount the number of 187 

individuals in a detected group. Many marine birds form large and mixed-species groups during 188 

the winter, and some species have quite similar physical characteristics, e.g., Common 189 

Goldeneyes (Bucephala clangula) and Barrow’s Goldeneyes (B. islandica), which may 190 

contribute to imperfect detection or misidentification.  191 
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Birds in photographs could not always be identified to species (~7% of marine birds, 192 

excluding gulls and scaup, could not be identified to species). Because the photographic data 193 

were used as truth in the analysis, this limited our ability to fully account for species 194 

misidentification. To develop species-specific abundances despite this limitation, we allocated 195 

the individuals in species groups identified in photographs to appropriate species in proportion to 196 

their occurrence in the photographic detections that were identified to species (Table 1, Conn et 197 

al. 2012). For example, if 450 Common Goldeneyes, 50 Barrow’s Goldeneyes, and 200 198 

unclassified goldeneyes were recorded in photographs, 450
50+450

 = 90% (180) of the unclassified 199 

goldeneyes would be allocated to the count of Common Goldeneyes and the remainder to 200 

Barrow’s Goldeneyes. In this way, we eliminated groups recorded as “unclassified goldeneyes,” 201 

in the dataset. For the observer data, we left counts in species groups unchanged. The model then 202 

dealt with these as misidentifications using the methods described below. The assumption 203 

implicit in our approach – that the relative abundance of unidentifiable individuals within species 204 

groups is proportional to the relative abundance of identifiable individuals within species groups 205 

in photographs – may not be perfectly met, and, therefore, we ran two analyses: a taxonomically 206 

fine-filtered analysis and a taxonomically coarse-filtered analysis. In the taxonomically coarse-207 

filtered analysis, we defined species groups to a higher taxonomic level (e.g., “goldeneyes”) 208 

rather than assigning them to species as described above. Additionally, given challenges with 209 

identification and the goals of the monitoring program, gulls (likely Larus spp. and 210 

Chroicocephalus spp. in the Salish Sea in winter) were not identified beyond species group even 211 

in the fine-filtered analysis. We also treated scaup, including Greater Scaup (Aythya marila) and 212 

Lesser Scaup (Aytha affinis), as a single group given the challenges in distinguishing them. 213 

Camera 214 
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We summarized observations from the camera including birds flying and birds on the 215 

surface of the water, giving us a count, 𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗, for transect j and species i. We assumed the camera 216 

contained no measurement error and captured the true abundance of birds available within the 217 

field of view. To estimate species composition in each transect, j, we described 𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗, using a 218 

multinomial distribution as shown in equation 1 (Figure 1): 219 

𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗~𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜋𝜋𝑖𝑖,∑ 𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗𝑖𝑖 ),        (1) 220 

where 𝜋𝜋𝑖𝑖 is the bird species composition pre-aircraft contact (i.e., the proportion of birds on the 221 

transect that are members of each species i), and ∑ 𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗𝑖𝑖  is the total bird abundance (i.e., the 222 

summation of the data across species, i, within each transect, j). We described the species-wide 223 

bird abundance on transect j in equation 2 using a Poisson distribution with mean species-wide 224 

bird abundance, Λ: 225 

∑ 𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗𝑖𝑖 ~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(Λ)          (2) 226 

We used the forward-facing camera data to estimate 𝜋𝜋𝑖𝑖 and Λ. We parameterize species 227 

composition as: 𝜋𝜋𝑖𝑖 = 𝜆𝜆𝑖𝑖
Λ

, where 𝜆𝜆𝑖𝑖 is the expected species-specific mean abundance. We 228 

constrained Λ = Σ𝑖𝑖𝜆𝜆𝑖𝑖, which implies equation 3: 229 

𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆𝑖𝑖).           (3) 230 

 The following subsections describe a method to estimate the three parameters associated 231 

with each type of measurement error (i.e., movement, species misidentification, and imperfect 232 

detection). However, we found that disentangling these three parameters can prove difficult in 233 

practice. Therefore, we follow the presentation of that analytical method with a condensed 234 

method that estimates those three parameters as one parameter to capture the total measurement 235 

error generated from movement, imperfect detection, and species misidentification. 236 

Movement 237 
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 The observer’s field of view is on the side of the aircraft; thus, observers count birds after 238 

they come into contact with the aircraft (i.e., are nearly or directly below the aircraft). Individual 239 

birds may move into or out of view at random or due to a behavioral response to the aircraft. The 240 

available latent abundance for observers is, therefore, an outcome of species-wide abundance and 241 

a movement process. We used equation 4 to describe available latent species-wide abundance, 242 

Σ𝑖𝑖𝑁𝑁𝑗𝑗𝑗𝑗, as the summation of individuals captured by the camera for each species i and transect j 243 

after aircraft contact: 244 

Σ𝑖𝑖𝑁𝑁𝑗𝑗𝑗𝑗~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(Λ × 𝛼𝛼�),         (4) 245 

where 𝛼𝛼� is the mean of the species-specific movement, 𝛼𝛼𝑖𝑖, which captures movement rates of 246 

individual species. The support for the movement rate is 0 to ∞, which allows for individuals to 247 

move both in and out of the observers’ field of view, where 𝛼𝛼� < 1 indicates more birds moving 248 

out of the field of view than in, 𝛼𝛼� > 1 indicates more birds moving into the field of view than out, 249 

and 𝛼𝛼� = 1 indicates the same magnitude of birds moving in and out of view. 250 

Species misidentification 251 

 Observers recorded the counts of each species i, which required correctly identifying 252 

individuals to species. Despite rigorous training and experience, species misidentification can 253 

occur during the observation process (Johnston et al. 2015). For a given species i, the observed 254 

number of individuals contains the number of correctly identified individuals of species i in 255 

addition to false positives (i.e., individuals from species k misidentified by the observer as 256 

species i). There may also be individuals of species i misidentified as species k. Again, we 257 

considered the true bird species composition, 𝜋𝜋, and we defined the bird species composition 258 

seen by the observers as 𝜙𝜙. We can use the conditional probability (𝜙𝜙𝑘𝑘|𝜋𝜋𝑖𝑖) to estimate how many 259 

individuals of species i were misidentified as species k. These conditional probabilities are 260 
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contained within a square 𝑖𝑖 × 𝑘𝑘 matrix, where elements along the diagonal are the probabilities 261 

of correctly identifying species i, (𝜙𝜙𝑘𝑘=𝑖𝑖|𝜋𝜋𝑖𝑖), and off-diagonal elements contain the 262 

misidentification probabilities (𝜙𝜙𝑘𝑘≠𝑖𝑖|𝜋𝜋𝑖𝑖). We use equation 5 to describe this observational 263 

process with a multinomial distribution: 264 

𝐶𝐶𝑗𝑗𝑗𝑗𝑗𝑗~𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚((𝜙𝜙𝑘𝑘|𝜋𝜋𝑖𝑖),𝑁𝑁𝑗𝑗𝑗𝑗),        (5) 265 

where the species-specific available latent abundance, 𝑁𝑁𝑗𝑗𝑗𝑗, for each species i in transect j is 266 

distributed into the elements 𝐶𝐶𝑗𝑗𝑗𝑗𝑗𝑗, which contain the additional dimension k. We define this latent 267 

value, 𝐶𝐶𝑗𝑗𝑗𝑗𝑗𝑗, as the scalar elements of the confusion matrix for each transect j, representing the 268 

number of individuals of species i that were correctly identified (diagonal elements, k = i) and 269 

incorrectly identified (off-diagonal elements, 𝑘𝑘 ≠ 𝑖𝑖). Using the 𝑖𝑖 × 𝑘𝑘 confusion matrix, the sum 270 

of column k (i.e., ∑ 𝐶𝐶𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖 ) is the number of individuals of species k recorded under perfect 271 

detection, including both species correctly identified (𝑘𝑘 = 𝑖𝑖, diagonal element) and misidentified 272 

(𝑘𝑘 ≠ 𝑖𝑖, off-diagonal elements), which might also include individuals counted by the aerial 273 

observers that were not captured by the camera. Then, we sum across columns k = 1, …, K 274 

species (i.e., ∑ ∑ 𝐶𝐶𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑘𝑘 ), which collapses the species-specific abundances to the species-wide 275 

latent abundance for each transect j.  Here, ∑ ∑ 𝐶𝐶𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑘𝑘  is equivalent to ∑ 𝑁𝑁𝑗𝑗𝑗𝑗𝑖𝑖 , as misidentification 276 

only changes the species-specific magnitudes but not the species-wide value. 277 

Imperfect detection 278 

In addition to misidentification, observers may also undercount or overcount the number 279 

of individuals in their field of view due to imperfect detection. We can describe this process 280 

using a binomial distribution as in equation 6; we use i to denote true species identification from 281 

the photographs and k to denote observed species identification from real-time observations: 282 

∑ 𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗𝑗𝑗𝑗𝑗𝑘𝑘 ~𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑝̅𝑝𝑜𝑜 ∑ 𝑁𝑁𝑗𝑗𝑗𝑗𝑖𝑖 ),        (6) 283 
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where ∑ 𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗𝑗𝑗𝑗𝑗𝑘𝑘  are data containing the observed bird species-wide counts for each observer o 284 

and transect j. Detection probability, 𝑝̅𝑝𝑜𝑜, is the mean observer- and species-specific detection 285 

probability; and ∑ 𝑁𝑁𝑗𝑗𝑗𝑗𝑖𝑖  (i.e., ∑ ∑ 𝐶𝐶𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑘𝑘 ) is the species-wide number of individuals. 286 

Model identifiability 287 

As noted above, the data and the structure of the model did not allow for separately 288 

estimating movement rate and detection probability. However, the mathematical product of these 289 

parameters, 𝛼𝛼� × 𝑝̅𝑝𝑜𝑜 = 𝜀𝜀𝑜̅𝑜, is estimable, giving us the modified species-wide observation process 290 

illustrated in equation 7: 291 

∑ 𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗𝑗𝑗𝑗𝑗𝑘𝑘 ~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(Λ × 𝜀𝜀𝑜̅𝑜).        (7) 292 

Here, we summed the observer data across species and described the data with a Poisson 293 

distribution. The expected value of the distribution is the product of the expected bird species-294 

wide abundance, movement rate, and detection probability. We generalize the combination of 295 

movement and detection to estimate 𝜀𝜀𝑗̅𝑗𝑗𝑗 specific to each transect and observer, allowing us to 296 

account for potential differences in 𝜀𝜀𝑜̅𝑜 due to the seat assignment (middle or rear) of observer, o, 297 

during transect, j, as described by equation 8: 298 

log (𝜀𝜀𝑗̅𝑗𝑗𝑗) = 𝜀𝜀𝑜̅𝑜 + 𝛽𝛽1 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝑗𝑗,         (8) 299 

where 𝜀𝜀𝑜̅𝑜 is the estimate for observer o when in the rear seat, 𝛽𝛽1 is the additive effect of being in 300 

the middle seat, and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝑗𝑗 is a binary indicator (1 for middle seat, 0 for rear seat) for each 301 

transect j and observer o. 302 

We cannot fully estimate the confusion matrix and associated conditional probabilities. 303 

However, we simply corrected for misidentification by specifying it as a rate, 𝜙𝜙𝑜𝑜𝑜𝑜=𝑜𝑜𝑜𝑜
𝜋𝜋𝑖𝑖

, the rate at 304 

which species i is correctly identified, rather than a series of conditional probabilities. Thus, we 305 
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used equation 9 to estimate the observed bird species composition, 𝜙𝜙𝑜𝑜𝑜𝑜, with a multinomial 306 

distribution and observer data: 307 

𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗𝑗𝑗𝑗𝑗~𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜙𝜙𝑜𝑜𝑜𝑜,∑ 𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗𝑗𝑗𝑗𝑗𝑘𝑘 ),       (9) 308 

where 𝜙𝜙𝑘𝑘 is the proportion of species identified by an observer as species, k. 309 

Out-of-sample correction 310 

 We can use the estimated parameters (i.e., 𝜀𝜀𝑜̅𝑜 ,𝜋𝜋𝑖𝑖,𝜙𝜙𝑜𝑜𝑜𝑜) to correct for out-of-sample 311 

observations made when photographic data do not exist (Figure 1). We used equation 10 to 312 

model species-specific observation data with a Poisson distribution: 313 

𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗𝑗𝑗𝑗𝑗~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �𝜆𝜆𝑖𝑖 × 𝜙𝜙𝑜𝑜,𝑘𝑘=𝑖𝑖
𝜋𝜋𝑖𝑖

× 𝜀𝜀𝑜̅𝑜�.        (10) 314 

Therefore, by combining the new observation data with the estimated parameters, we can 315 

calculate the parameter of interest, 𝜆𝜆𝑖𝑖. The estimated correction factor, CF, for each species and 316 

observer is 𝐶𝐶𝐶𝐶�𝑖𝑖𝑖𝑖 = 𝜙𝜙𝑜𝑜,𝑘𝑘=𝑖𝑖
𝜋𝜋𝑖𝑖

× 𝜀𝜀𝑜̅𝑜.  317 

Parameter estimation 318 

 We fit our model using a Markov Chain Monte Carlo (MCMC) approach (Gelfand and 319 

Smith 1990, Casella and George 1992, Geman and Geman 1993). We fit the model in the R 320 

package NIMBLE version 0.6-10 (de Valpine et al. 2017) in R version 4.0 (R Core Team 2020) 321 

with 3 chains, a burn-in of 10,000 iterations, and a sampling period of 20,000 iterations. We used 322 

the R packages coda (Plummer et al. 2006), ggmcmc (Fernández-i-Marín 2016), and MCMCvis 323 

(Youngflesh 2018) to inspect model convergence using trace plots, density plots, and Gelman-324 

Rubin statistic, 𝑅𝑅�, values (Gelman and Rubin 1992). We used vague priors, including  the log of 325 

𝜆𝜆𝑖𝑖~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0, 100), 𝜙𝜙𝑜𝑜𝑜𝑜~𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑙𝑙𝑙𝑙𝑙𝑙(1), 𝜀𝜀𝑜̅𝑜~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0, 100), and 𝛽𝛽1~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0, 100). 326 

Model testing 327 
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We used simulated data to evaluate the model’s ability to correctly return parameter 328 

estimates for out-of-sample predictions (see Appendix SI for full description of model testing 329 

methods). For the simulations, we simplified the model to only include one observer and did not 330 

include a seat assignment covariate. We generated a parameter value for the true movement 331 

while also generating an offset (between 1 and 1.5) that allowed for a larger field of view for 332 

observers compared to the camera. Similarly, we generated probabilities of misidentification 333 

(pairwise values across all species) and detection (one value assigned for all species) and the true 334 

species composition for each simulated transect. We used the generated misidentification values 335 

to construct a species × species confusion matrix for each transect. Using the generated values 336 

for true movement and true composition, we simulated species-specific data for the camera. Data 337 

and model code for the simulations and empirical model are provided at 338 

https://github.com/Quantitative-Conservation-lab/seaduck_detection. 339 

 340 

Results 341 

 Summed across all 321 transects, the camera captured 55,000 photographs containing 342 

9029 individual marine birds, whereas observer 1 recorded 6434 birds, and observer 2 recorded 343 

5021. Thirty-one marine bird species were identified across observers and photographs (Table 1). 344 

The total number of individuals per species captured on the camera across all transects ranged 345 

from 2 (black scoter, Melanitta americana) to 1644 (bufflehead, Bucephala albeola). The 346 

camera captured 1612 groups of marine birds across all transects, ranging from 1 to 518 birds per 347 

group with a mean of 5.60 birds per group (SD = 19.16). Group size was left skewed: 79% of 348 

groups had ≤5 birds and 91% had ≤10 birds. Including only birds that could be identified to 349 

species, 27% of groups captured by the camera included more than one species. 350 
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 Both observers tended to undercount birds compared to the camera (Figure 2); observer 1 351 

recorded a mean of 78.9% (SD = 1.2%) of the birds caught on the camera per transect, and 352 

observer 2 recorded a mean of 68.7% (SD = 1.0%). However, both observers counted more birds 353 

than caught on the camera on some transects (28.3% of the transects for observer 1 and 25.2% of 354 

the transects for observer 2). The species with the smallest difference in total counts between 355 

observer and camera was Barrow’s Goldeneye (observer 1 total was 96.7% of the camera total) 356 

and Brant (Branta bernicla.; observer 2 total was 100.4% of the camera total). The species with 357 

the greatest difference in counts between observer and camera were Pelagic Cormorant 358 

(Phalacrocorax pelagicus; observer 1 total was 10.6% of the camera total) and Northern Pintail 359 

(Anas acuta; observer 2 total was 1.4% of the camera total). 360 

 The results from our simulations indicated that our model was able to capture the data-361 

generating parameters accurately. The simulations resulted in a 100% convergence rate for 𝜀𝜀 ̅362 

with minimal bias (< -0.01%, interquartile range (IQR) = -0.05 – 0.04), a 96.2% convergence 363 

rate for 𝜆𝜆 with minimal bias (0.01%, IQR = -0.06 – 0.08), and a 98.2% convergence rate for Λ 364 

with minimal bias (<0.01%, IQR = -0.05 – 0.07).  365 

Based on model diagnostics and general agreement between our corrected counts and our 366 

camera counts, our model appeared to perform well on the empirical dataset. Overall diagnostics 367 

indicated that our models converged; although, we had 𝑅𝑅� estimates > 1.1 for 𝐶𝐶𝐶𝐶�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 368 

and 𝐶𝐶𝐶𝐶�𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (Appendix S2 Table S1), which had very few observations (Table 1). 369 

Correction factor estimates varied across species/species groups and between observers 370 

(Appendix S2 Table S1, Figure 3). For most species/species groups, our calculated corrected 371 

counts (calculated by multiplying the inverse of our correction estimates from our model by the 372 

observer counts) were very similar to the counts from the camera. As one would expect, the 373 
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model tended to produce correction estimates that yielded corrected counts proportionally closer 374 

to the counts of the camera for species with larger sample sizes. The seat position of the observer 375 

had a negligible effect on detection/species identification (taxonomically fine-grained analysis: 376 

𝛽𝛽1(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) = -0.001, 95% credible interval = -0.04 – 0.04; taxonomically coarse-grained analysis: 377 

𝛽𝛽1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = -0.002, 95% credible interval = -0.04 – 0.03). 378 

 379 

Discussion 380 

 Comparing detected animals to known numbers of animals can be an effective method 381 

for estimating measurement errors and adjusting abundance estimates to improve accuracy of 382 

wildlife monitoring data (Caughley et al. 1976, Bayliss and Yeomans 1990, Pearse et al. 2008). 383 

Our results suggest that uncorrected counts from aerial surveys of marine birds in the Salish Sea 384 

include notable measurement error resulting from some combination of animal movement in 385 

response to the plane, imperfect detection, and species misidentification. Comparing real-time 386 

observations of bird counts from aerial surveys, especially with multiple species, to counts from 387 

photographs taken of the area in front of the plane is a complicated process because animal 388 

movement, detection, and species identification cannot be separately estimated. Therefore, it is 389 

impossible to determine if an individual captured by the camera but not by an observer resulted 390 

from the bird not being available for detection, the observer not detecting the bird, or the 391 

observer detecting the bird but identifying it as the incorrect species. As is common in other 392 

studies investigating observation errors from aerial surveys (Caughley et al. 1976, Pearse et al. 393 

2008, Alisauskas and Conn 2019), observers counted fewer individuals than were in the 394 

population of interest (i.e., in the photographs from the camera), and measurement error varied 395 
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by species and observer. Applying the correction factors that we estimated to the observer counts 396 

yielded accurate estimates based on comparison to the camera counts.  397 

At its most basic level, our study demonstrates that the ability to detect and correctly 398 

identify marine bird species from aircraft varies both across observers and species, reinforcing 399 

that estimates correcting for biases must account for, at minimum, these two factors. Although 400 

multiple methods to account for imperfect detection of wildlife in aerial surveys have emerged, 401 

many of these approaches either do not mimic the actual field conditions under which monitoring 402 

data are collected, do not account for partial availability, or fail to account for species 403 

misidentification (Davis et al. 2022). Given the ability of our model to provide accurate 404 

correction factors for the species in the dataset, our model results can be used to adjust both 405 

future and historical counts of marine birds in the Salish Sea aerial survey by the same observers 406 

under the assumption that observer performance is constant over time. For surveys with the same 407 

observers, marine bird wintering counts can be retroactively adjusted to improve the ability of 408 

the survey to capture true abundance while integrating uncertainty in the observation process into 409 

the abundance estimates. However, observers will change over time, as will the abilities of 410 

individual observers (Sauer et al. 1994), underscoring the value of repeating the simultaneous 411 

collection of observer and photographic data as funding allows, when staff turnover occurs, or 412 

when conditions that may influence detection are altered (e.g., change of aircraft platform). 413 

Although the method we have developed can provide accurate correction factors for most 414 

of the species recorded in the survey, the method has limited value when species are rare or 415 

highly sensitive to plane presence. Given that the correction is multiplicative, the models we 416 

present cannot provide an estimate for the true number of birds present when the observer count 417 

for a species is zero. In the data for the current study, observers did not record any observations 418 
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of Black Scoter or Eurasian Wigeon, but the camera captured both. From the surveys alone, one 419 

could erroneously but reasonably conclude that neither of these species were present on the 420 

transects. Black Scoter was only captured by the camera on one transect, and one observer may 421 

have seen the same animal and identified it as an unknown scoter. Eurasian Wigeon were 422 

identified in mixed groups with American Wigeon, which substantially outnumber the Eurasian 423 

Wigeon. Others have also noted that less numerous species in a mixed groups may receive 424 

disproportionately lower counts or may not be recognized as separate species (Gilbert et al. 425 

2021). 426 

Although our correction estimates are specific to the Salish Sea, specific characteristics 427 

of the survey (e.g., aircraft used and altitude flown), observers, and species recorded during the 428 

surveys, our approach has potential to be useful for other monitoring programs, especially those 429 

using multiple observers and in study regions where the ability to account for imperfect detection 430 

using double observer methods or multiple survey platforms is logistically prohibitive. 431 

Researchers can mimic our field approach and apply our model to their own data to estimate 432 

their own correction factors. Several expansions and refinements are also possible. Future 433 

applications may benefit from using an array of point-of-view cameras that accurately capture 434 

the same field of view as the observers. This source of data would allow for development of a 435 

detection model that accounts for group size. As demonstrated in other studies investigating 436 

detection probabilities in aerial surveys (Cook and Jacobson 1979, Pearse et al. 2008, Clement et 437 

al. 2017, Gilbert et al. 2021), group size can affect the detection probabilities of observers. 438 

However, achieving an exactly equivalent field of view between observers and cameras could be 439 

difficult in practice because observers would need to maintain fixed head and eye positions 440 

throughout each transect. 441 
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Advances in plane-based or autonomous aerial vehicle-based photography, coupled with 442 

artificial intelligence-based analysis of images, have the potential to transform aerial monitoring 443 

of wildlife (e.g., Gonzalez et al. 2016, Chabot et al. 2018). Removing the reliance on plane-based 444 

observers with photographic images that can be saved and revisited over time as technology 445 

improves could address many of the challenges of observer-based surveys. However, to be 446 

viable, surveys of this type will have to be of sufficiently high quality and low cost, and the 447 

timeline for development of the technology necessary to facilitate such surveys is uncertain. In 448 

multi-species systems, this timeline is likely to be extended. 449 

 Many wildlife population and community analyses require accurate long-term monitoring 450 

of abundance to inform species management or address scientific hypotheses (Tinkle 1979, 451 

Nichols and Williams 2006). Inaccurate abundance estimates can lead to poor management 452 

decisions or erroneous scientific conclusions (Ward-Paige et al. 2010, Elliot et al. 2020). By 453 

means of a small supplemental study using cameras to compare observed counts to known counts 454 

from photographs, we have shown that it is possible to account for multiple sources of 455 

measurement error, including animal movement, imperfect detection, and species 456 

misidentification. Additionally, we have demonstrated how to apply estimated correction factors 457 

retroactively to existing data. Our results contribute to a growing recognition of the need for 458 

tools to improve abundance estimates from aerial-based survey counts. The ability to maintain 459 

long-term aerial monitoring efforts while simultaneously improving our confidence in the 460 

estimates and trends obtained from them is imperative for the management of wildlife 461 

populations. 462 
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Table 1. Species and species groupings of marine birds identified from photographs taken during 623 

aerial surveys in the Salish Sea, Washington, USA. To account for unclassified birds even in the 624 

reference (i.e., camera) data, we conducted two analyses, a taxonomically fine-grained analysis 625 

and coarse-grained analysis. The classes in the fine-grained and coarse-grained analyses are 626 

shown below, along with scientific names for species. 627 

Species (i.e., fine-grained) Species group (i.e., coarse-

grained) 

Scientific name Counts (observer 

1, observer 2, 

camera) 

SPECIES    

Ancient Murrelet  alcida Synthliboramphus 

antiquus 

0, 6, 1 

Common Murre alcid Uria aalge 29, 40, 63 

Marbled Murrelet alcid Brachyramphus 

marmoratus 

51, 9, 104 

Pigeon Guillemot alcid Cepphus columba 24, 34, 88 

Rhinoceros Auklet alcid Cerohinca 

monocerata 

103, 89, 377 

unclassified alcidb alcid NA 6, 4, 4 

unclassified small alcidb alcid NA 0, 1, 2 

unclassified murreletb alcid NA 0, 8, 26 

Brant Brant Branta bernical 11566, 1195, 

1190 
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Bufflehead Bufflehead Bucephala 

albeola 

1196, 991, 1659 

Double-crested Cormorant cormorant Nannopterum 

auritum 

6, 15, 22 

Pelagic Cormorant cormorant Urile pelagicus 7, 9, 66 

unclassified cormorantb cormorant NA 50, 36, 65 

American Wigeon dabbling duckc  Mareca 

americana 

496, 258, 1055 

Eurasian Wigeon dabbling duck Marcea penelope 0, 0, 10 

Mallard dabbling duck Anas 

platyrhynchos 

22, 10, 66 

Northern Pintail dabbling duck Anas acuta 90, 2, 138 

Barrow’s Goldeneye goldeneye Bucephala 

islandica 

29, 19, 30 

Common Goldeneye goldeneye Bucephala 

clangula 

90, 32, 174 

unclassified goldeneyeb goldeneye NA 68, 44, 61 

Horned Grebe grebe Podiceps auratus 55, 41, 221 

Red-necked Grebe grebe Podiceps 

grisegena 

46, 7, 52 

Western Grebe grebe Aechmophorus 

occidentalis 

254, 194, 399 

unclassified grebeb grebe NA 0, 4, 9 
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gulld gull NA 515, 422, 726 

Harlequin Duck Harlequin Duck Histrionicus 

histrionicus 

36, 21, 74 

Long-tailed Duck Long-tailed Duck Clangula 

hyemalis 

320, 260, 402 

Common Loon loon Gavia immer 59, 25, 89 

Pacific Loon loon Gavia pacifica 3, 8, 18 

Red-throated Loon loon Gavia stellata 51, 84, 98 

unclassified loonb loon NA 41, 22, 121 

Common Merganser merganser Mergus 

merganser 

1, 2, 1 

Red-breasted Merganser merganser Mergus serrator 57, 19, 104 

unclassified merganserb merganser NA 4, 62, 20 

Ruddy Duck Ruddy Duck Oxyura 

jamaicensis 

26, 5, 30 

scaupe scaup NA 90, 75, 124 

Black Scoter scoter Melanitta 

americana 

0, 0, 2 

Surf Scoter scoter Melanitta 

perspicillata 

691, 560, 993 

White-winged Scoter scoter Melanitta 

deglandi 

129, 92, 450 

unclassified scoterb scoter NA 158, 171, 107 
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unclassified duckb f NA 0, 75, 79 

unclassified seabirdb f NA 11, 0, 79 

aalcids are members of the Family Alcidae 628 

bIn the taxonomically fine-grained analysis, counts of the following groups were allocated 629 

proportional to the counts for individuals within the group that were identified to species, as 630 

follows: “unclassified alcid” to all alcids; “unclassified small alcid” to all murrelets; 631 

“unclassified murrelet” to all murrelets; “unclassified cormorant” to all cormorants; “unclassified 632 

goldeneye” to all goldeneyes; “unclassified grebe” to all grebes; “unclassified loon” to all loons; 633 

and “unclassified merganser” to all mergansers. The species group “unclassified duck” was 634 

allocated proportionally across all ducks (i.e., Bufflehead, all dabbling ducks, all goldeneyes, 635 

Harlequin Duck, Ling-tailed Duck, all mergansers, Ruddy Duck, scaup, and all scoters). The 636 

species group “unclassified seabird” was allocated proportionally across all other species 637 

cdabbling ducks are members of the Family Anatidae, Subfamily Anatinae 638 

dGiven challenges with identification and the objectives of the monitoring program, we grouped 639 

all gulls (Family Laridae), likely including Larus spp. and Chroicocephalus philadelphia, in both 640 

the fine-grained and coarse-grained analysis 641 

escaup are composed of two species, Greater Scaup (Aythya marila) and Lesser Scaup (Aytha 642 

affinis), but because of challenges in distinguishing them, they were never identified to species in 643 

the survey data 644 

fIn the taxonomically coarse-grained analysis, counts of the following groups were allocated 645 

proportionally to species groups as follows: “unclassified duck” to Bufflehead, dabbling ducks, 646 

goldeneyes, Harlequin Duck, Long-tailed Duck, mergansers, Ruddy Duck, scaup, and scoters; 647 

“unclassified seabird” to all species groups 648 
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Figure Captions 650 

Figure 1. Directed acyclic graph showing relationship between in-sample data and out-of-sample 651 

correction.  652 

Boxes are data, and dashed circles are parameter values. Solid arrows represent relationships 653 

between data and parameters. Dashed arrows indicate information used to correct the out-of-654 

sample data. 655 

 656 

Figure 2. Observer count accuracy per species 657 

Points display the count captured by the camera subtracted from each observer’s count for each 658 

species for each group of birds observed. Only groups that were captured by camera were 659 

included. 660 

 661 

Figure 3. Model performance for count corrections 662 

Points represent raw counts from observers or the camera, and triangles represent estimated 663 

abundances produced by our model for select species. Error bars on estimates indicate 95% 664 

credible intervals. Note, y-axis is on logarithmic scale. 665 
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