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Harlequin Ducks (Histrionicus histrionicus; HADU) are an imperiled sea duck that breeds 

along white-water mountain streams, but challenges in surveying them have made it difficult to 

understand population trends in their Northern Rocky Mountain breeding population. In this 

study we had two objectives: (1) evaluate non-invasive survey methods for detecting HADU on 

their breeding grounds in Western Montana and Northern Idaho, and (2) develop an occupancy 

model to predict potential breeding stream use for HADU across the region. First, we assessed 

the efficacy of ground-based foot surveys (GBS), environmental DNA (eDNA), and camera traps 

to detect breeding HADU during time periods corresponding to the incubation and brood rearing 

phases of their annual cycle. GBS (0.51, SE: 0.108) and eDNA (0.49, SE: 0.146) had the highest 

mean detection probabilities during incubation season and time-lapse detection camera traps 

(0.16, SE: 0.067) were more effective than motion detection camera traps. We found that 

combining methods could improve our cumulative detection probability in a single visit to a 

stream; taking five eDNA samples in tandem with one GBS achieved a cumulative detection 

probability of 0.97 (SE: 0.037), emphasizing the power of combining methods. Second, we built 

an integrated species distribution model for breeding HADU using detection / non-detection data 

from GBS and eDNA samples collected from 2009 to 2024 across 1,025 one-mile stream 

segments. Our results indicated that stream geomorphology such as stream features like pools 

and braiding, human disturbance from changes to the landscape, and mean annual flow are 

important for predicting HADU site-use. Using posterior estimates from the occupancy model, 

we predicted site-use to streams within our sampling frame across the region. Predicted site use 

indicates that the northwest portion of the study area around Glacier National Park has the 

highest probability of site-use (0.29, SD: 0.07). To our knowledge this is the first large-scale 

statistical model for HADU site-use in Western Montana and Northern Idaho. By integrating 

findings from both chapters, we offer actionable strategies and recommendations for agencies to 

more efficiently detect and protect HADU.  
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Chapter 1: 

Investigating three non-invasive survey methods for detecting 

Harlequin Ducks (Histrionicus histrionicus) on their breeding 

grounds in the Northern Rockies 
 

1.1 Introduction: 

A longstanding challenge of ecology and management is obtaining the most valuable 

information from data collection and monitoring efforts (Nichols & Williams, 2006). This 

challenge requires careful allocation of limited resources to optimize data collection methods that 

address specific scientific and management goals (Nichols & Williams, 2006, Yoccoz, 2022).  

Population monitoring methods are constantly evolving as new technologies modify survey 

methodology and generate new types of data (Franklin et al., 2019; Golding et al., 2022; Iannino 

et al., 2024). However, the relevance and applicability of new survey methods is limited by our 

understanding of different factors that impact their efficacy. Understanding what factors impact 

method efficacy is especially relevant for species of conservation concern.  

Harlequin Ducks (HADU; Histrionicus histrionicus) are a species of concern and difficult to 

survey given their life history, habitats they occupy, and low abundance. Although they have 

been monitored since the early twentieth century (Idaho Department of Fish and Game, n.d.; 

Montana Natural Heritage Program, 2024; Smith et al., 2023), the efficacy of these survey 

methods have not been evaluated. HADU are a northern hemisphere sea duck that exhibit strong 

site fidelity, with males following their female partners back to the female’s natal stream to 

reproduce. They breed on rugged, fast-moving, whitewater streams in mountainous regions and 

fidelity to these streams creates regionally distinct breeding populations (Bengtson, 1972; 
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Robertson & Goudie, 2020). In the Northern Rocky Mountain breeding population (Montana, 

Idaho, Wyoming, and Alberta), monitoring efforts by multiple agencies and non-governmental 

organizations over the past century have documented declining numbers of HADU (Bate, 

Unpublished data; Idaho Department of Fish and Game, n.d.; Smith et al., 2023). These efforts 

include long-term annual monitoring of four breeding streams with historically large populations, 

as well as numerous single day surveys on other streams in the region every year (Bate, 

Unpublished data; Idaho Department of Fish and Game, n.d.; Smith et al., 2023). Additionally, 

roughly every five years since 2000, agencies coordinated pulses of high survey effort in priority 

areas to fill spatial data gaps (Bachen & Maxwell, personal communication, January 1, 2024; 

Montana Natural Heritage Program, 2024). Despite these efforts, outside of the four heavily 

monitored streams, inaccessibility of habitat and challenges associated with existing 

methodologies have limited the ability to obtain robust population estimates needed to inform 

management.  

Monitoring methods for HADU have primarily relied on direct, in-person observations 

(Idaho Department of Fish and Game, n.d.; Montana Natural Heritage Program, 2024). However, 

because HADU inhabit inhospitable habitats, conditions outside the observer’s control can make 

counts of these ground-based foot surveys (GBS) highly variable. For example, in high water, 

HADU often move into backwaters where they are unobservable (Hansen et al., 2019; Rine et 

al., 2022). High water also limits human access to streams, thereby negatively influencing 

detection. Using GBS, it is impossible to know whether a lack of detection is related to 

incomplete detection or a lack of bird occupancy. Adding to the complexity, behavior during 

different life history stages might affect the variability of GBS. The HADU breeding season can 

be broken into three distinct periods where behavior differs: breeding (~ late April – May), 
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incubation (~June), and brood rearing (~July – mid September) (Kuchel, 1977; Reichel et al., 

1995). During the incubation period, HADU only tend to forage and preen on the river for 2-4 

hours a day in the afternoon and evening (MacCallum et al., 2021), whereas broods during the 

brood-rearing period spend much of the day in the stream. However, GBS are often completed 

when time allows, and surveys can span multiple life history phases and represent different 

distances or sections of streams. Furthermore, no one has identified the efficacy of a single GBS 

for any distance of survey, let alone during different life history stages. A better understanding of 

these complexities could provide a basis for improving interpretation of existing survey data 

(Bledsoe et al., 2022) and methodology for future surveys.  

Two increasingly popular non-invasive methods for surveying wildlife occurrence are 

environmental DNA metabarcoding (eDNA) and remote, non-invasive cameras (camera traps) 

(Randler & Kalb, 2018; Thomsen & Willerslev, 2015). Both eDNA and camera traps could 

improve our understanding of HADU occurrence and abundance, but their efficacy has not yet 

been assessed for stream-residing waterfowl. eDNA allows researchers to assess species’ 

presence by extracting small samples of DNA from substrates that the focal species interacts 

with, such as water (Ruppert et al., 2019). HADU spend substantial portions of each day on their 

breeding streams (Bengston, 1972) and applying eDNA methods might be especially useful for 

determining if they occupy streams that are otherwise difficult to survey (Sigsgaard et al., 2015). 

In comparison, camera traps allow for detection of species across greater time periods and 

overcome other methods’ shortcomings that result from changes in animal behavior due to 

human presence (Burton et al., 2015). Camera traps can be deployed to detect motion or in a 

time-lapse mode, set to take photos at a pre-determined interval. Camera traps are not typically 

used on streams or on sea ducks. However, during the incubation period and the brood rearing 
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period, HADU spend their days in a one mile stretch of stream where they forage downstream 

then fly or swim back upstream (Hansen et al., 2019). Due to HADU’s restricted home range 

during these two periods, strategically placed cameras may be effective in detecting individuals. 

Our objective was to understand the efficacy of three non-invasive HADU survey methods, 

GBS, eDNA, and camera traps across two distinct life stages, incubation and brood rearing. With 

all methods, we expected differences in detection probability between these two periods based on 

differences in HADU behavior or the abundance of ducks on the stream. Additionally, we 

expected stream characteristics, such as streamflow, to differentially impact HADU detection 

probability by method (Table 1). By understanding the process underlying the efficacy of each 

method, we determined how much effort was required to attain 80, 90, and 95 percent 

cumulative detection confidence per method and combination of methods. Identifying the most 

effective survey methods for these two time periods allows us to gain the highest quality 

information about HADU occupancy. Analysis of trade-offs in both effort and information 

gained allows us to provide recommendations on how best to implement these methods to 

improve our understanding of the status of Northern Rockies breeding population of HADU.  

1.2 Methods:  

1.2.1 Study Area: 

 The study area encompassed parts of the Rocky Mountains HADU breeding population 

in Montana and Idaho. Our boundary extended from the northeast boundary of Glacier National 

Park at the United States - Canada border, south along the Rocky Mountain front through the 

Gallatin National Forest to the Montana - Wyoming border and west to the Washington- Idaho 

border encompassing the Idaho panhandle (Figure 1).  



5 
 

We sampled known breeding streams throughout the study area. Breeding streams in the 

northern portion of the area are typically found at lower elevations (1000 - 2000m) within mesic 

forest dominated by cottonwoods (Populus spp.), hemlock (Tsuga spp.) and Western Red Cedar 

(Thuja plicata). In southern and eastern areas, breeding streams are found in more xeric conifer 

forests at higher elevations (up to 2500m) (Reichel et al., 1996). 

1.2.2 Stream Selection: 

We selected 10 streams from an initial list of 23 identified streams across western 

Montana and northern Idaho. Selected streams had high probable occupancy to facilitate 

studying the drivers of HADU detections; all study sites had confirmed breeding HADU in the 

last five to ten years (Idaho Department of Fish and Game, 2024; Montana Natural Heritage 

Program, n.d.). Streams varied in flow patterns, elevation, and vegetation cover (Appendix 1). 

Each selected stream was accessible to field personnel. Agency personnel sampled each stream 

twice during two separate field seasons in 2022 and 2023, and each sampling occasion occurred 

over a period of three consecutive days. The seasonal timing of sampling occasions was 

determined based upon stream elevation which influences HADU breeding phenology with 

lower elevation streams sampled earlier in the season when breeding occurs (MacCallum et al., 

2021). We expected all ten streams to be occupied during the first sampling occasion and 

breeding attempts to occur on all ten streams in both years. However, success in the breeding 

attempts was required for the stream to be occupied during the second visit.  

1.2.3 Field Methods: 

During sampling occasions observers collected eDNA and deployed cameras for one day 

each. Additionally, GBS were conducted each day during sampling occasions (Table 2). For each 

stream visit, there were at least two designated primary observers, who surveyed all three days; 
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additional people may have joined for single days. The observers in this study included wildlife 

biologists, biological field technicians, interns, and volunteers who worked for, or were 

associated with Glacier National Park, the United States Forest Service, Montana Fish, Wildlife, 

and Parks, Idaho Department of Fish and Game, or Montana Audubon. All observers watched a 

training video and were given a hard copy of the protocol with documentation for identifying 

species and habitat variables to help enhance the quality of data they collected (Lewandowski & 

Specht, 2015). Population closure was assumed within each three-day visit, but not between 

visits. The timing of the first visit corresponded to when HADU with still viable nests would 

have been incubating (MacCallum et al., 2021). We expected to detect lone females who either 

did not breed, experienced a nest failure or were currently incubating; as such, a detection in this 

period would indicate attempted breeding and stream occupancy. The second visit occurred 

approximately three weeks later and corresponded to the brood rearing period; a detection in this 

period would indicate nest success.  

1.2.4 Ground-based Foot Surveys (GBS) 

 GBS consisted of at least two observers walking upstream in the stream, when possible, 

looking for HADU. Observers surveyed unwalkable streams from the bank, taking turns 

watching the stream and walking through the brush so one person was always watching for 

HADU until it was safe to walk in the stream again (Hansen et al., 2019). Observers measured 

stream flow each day, at the start of the survey, using the float method (Robins & Crawford, 

1954) and recorded data that included survey start and end time, number of HADU seen, the 

chick class, the number of observers, and data consistent with historical GBS (Appendix 2). 

Surveys were initiated between 07:00 and 10:00 and took varying amounts of time (six hours on 

average) to complete depending on the distance of the stream and the complexity of the terrain. 
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1.2.5 Environmental DNA (eDNA) 

  Observers collected eDNA samples while conducting a GBS, typically on the second day 

of each stream visit following the United States Forest Service’s National Genomics Center for 

Wildlife and Fish Conservation protocol (Carim et al., 2016). Five liters of water was filtered, 

streamside, through a 1.5-μm-pore fiberglass filter (Carim et al., 2016). Observers collected 

eDNA at three different spatial scales (Figure 2) which allowed us to assess different spatial 

sampling strategies: samples were spaced at 250m for the first 1,500m of the survey reach and 

every 500m thereafter. Duplicate samples were collected at the sites corresponding to 1,000m 

spacing. eDNA samples were taken against direction of the stream flow. All samples were 

extracted at the National Genomics Center in Missoula, Montana, using a modified Qiagen 

DNEasy® Blood and Tissue Kit optimized for eDNA filters (Franklin et al., 2019). eDNA 

samples were analyzed for HADU DNA using a species-specific and sensitive quantitative 

polymerase chain reaction (PCR) assay developed by the National Genomics Center to detect a 

region of the HADU cytochrome c oxidase subunit I mitochondrial gene (Franklin et al. in prep). 

Extracts were then analyzed for the presence of HADU DNA in triplicate reactions using the 

optimized quantitative PCR assay conditions from Franklin et al. (in prep) on a QuantStudio 3 

Real-Time PCR System (Life Technologies). A sample was determined to have a HADU 

detection if at least one of the triplicate reactions amplified HADU DNA. Negative controls were 

included in the DNA extraction process by including samples that had filtered distilled water and 

in the quantitative PCR analyses by using distilled water as a replacement of the DNA template. 

All samples were tested for inhibition by including a TaqMan Exogenous Internal Positive 

Control in the quantitative PCR reaction. A sample was considered inhibited if the mean cycle 

value (Ct) of the Internal Positive Control was more than one Ct delayed than the mean Ct of the 
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Internal Positive Control in the negative control reactions. To estimate the number of HADU 

DNA copies in each reaction (QeDNA), samples were analyzed alongside a seven-level standard 

curve (31 250, 6 250, 1 250, 250, 50, 10, and 2 copies per reaction) following the same 

conditions mentioned above with reporting requirements of efficiency between 90 and 110 

percent and R^2 above 0.990. eDNA target copy numbers were then estimated by generating a 

linear regression from the amplification Ct values of the known starting quantities of DNA in 

standard curve and applying the regression to each Ct value of a reaction.  

1.2.6 Camera Traps   

Observers placed camera traps during the initial GBS within each sampling occasion. 

Two camera traps, one time-lapse and one motion detection, were placed each river mile 

(1,600m), starting at mile zero, along the surveyed reach of stream. Observers placed cameras on 

suitable pre-existing features, such as tree roots and logs, facing the stream within a 300-meter 

radius of the river mile (Figure 2). The 300-meter radius was pre-determined in ArcGIS Pro (Ersi 

Inc., 2022) prior to the survey. One camera was set to take photos every five minutes (time lapse) 

while the other camera was set to take motion trigger photos. Observers removed the camera 

traps during the second sampling occasion, approximately 3 weeks after deployment.  

Photos were checked for HADU using a two-stage process. First, photos were processed 

by Microsoft MegaDetector AI (Beery et al., 2019) which identified empty images, objects in 

potential non-empty images and ascribed confidence values indicating whether the object was an 

animal, person, or vehicle. We then manually processed all photos with an AI detection 

confidence of 0.5 – 1 that were identified to contain an animal using Timelapse2 (v2.3.0.0, 

Greenberg et al., 2019). Animals in photos were identified to species. All photos were analyzed 

by one of two observers and all HADU and other waterfowl identified in photos were verified by 
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an experienced observer. We also recorded the number of trap nights, camera angle to the stream 

(across = perpendicular to flow of the stream within 45 degrees; up or down = parallel to flow of 

stream within 45 degrees; or water-facing = where the camera was pointed downward at the 

stream such that the lateral angle could not be assessed), predominant stream feature (boulder, 

rapid, run, or pool), and the number of photos taken per day. This information was determined 

through photo assessment from each camera.  

1.3 Statistical methods: 

We confirmed each site was occupied by HADU if individuals were detected by at least 

one survey method during at least one day in each three-day sampling occasion. We used 

generalized linear mixed models, with a logit link, to investigate the detection probability of each 

method. We built six models, two for each method, and for each method we used a binary 

response variable representing detection / non-detection and specific covariates that we 

hypothesized affected the detection process for that method (Table 1). Before fitting models, we 

checked for correlation between covariates within each model. We considered variables to be 

independent if their R2 value was less than 0.5 (max observed value = 0.818). We chose between 

correlated variables based on which variable was considered a priori to be more relevant to 

implementing best survey practices. We interpreted all covariates with a p-value < 0.1. For all 

models we used the lme4 package implemented in R 4.2.3 (Bates et al., 2015; R Core Team, 

2023). We evaluated the intercept to understand the mean per-replicate detection probability of 

each method and used p-values of each covariate to determine significance in affecting HADU 

detection. Based on model results, we estimated the effort needed to reach different thresholds of 

cumulative detection confidence using each survey method. We calculated the number of 
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replicates of each method that was necessary to achieve a cumulative detection to 0.8, 0.9, and 

0.95 using the equation: 

𝑃̂ = 1 − ∏(1 − 𝑝̂ 
𝑖
)

𝑛

𝑖=1

 

(1) 

Where 𝑃̂ is cumulative detection, 𝑝̂  is our mean detection probability for a single replicate of a 

sample, and n is the number of replicates of each method or combination of methods (Canessa et 

al., 2012; Kéry, 2002; Loane et al., 1964). Finally, we calculated the cumulative detection 

probability when methods were combined (i.e. eDNA samples taken in tandem with a GBS).  

1.3.1 Ground based foot survey models: 

For the incubation and brood rearing seasons, we built separate, but identical, models 

relating detection of HADU in a GBS to the four covariates: pace, number of observers, 

streamflow, and mean QeDNA (Table 1). All covariates were scaled and centered. The model 

took the form: 

𝐿𝑜𝑔𝑖𝑡(𝑦) = 𝛽0 + 𝛽1𝑋𝑝𝑎𝑐𝑒 + 𝛽2𝑋𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟𝑠 + 𝛽3𝑋𝑠𝑡𝑟𝑒𝑎𝑚𝑓𝑙𝑜𝑤 + 𝛽4𝑋𝑚𝑒𝑎𝑛𝑄𝑒𝐷𝑁𝐴 
(2) 

1.3.2 Environmental DNA models: 

For the incubation and brood rearing seasons, we built separate, but identical, models 

relating detection of HADU with eDNA to the two covariates: streamflow and benthic substrate 

(Table 1). Our covariates account for variation at the sample location but not at the stream level; 

so, we included a random effect for each stream to account for variation within and between 

streams. Streamflow and wetted width were scaled and centered, and benthic substrate was 

included as a categorical variable. The model took the form: 

𝐿𝑜𝑔𝑖𝑡(𝑦) =  𝛽0 + 𝛽1𝑋𝑠𝑡𝑟𝑒𝑎𝑚𝑓𝑙𝑜𝑤,𝑗 + 𝛽2𝑋𝑏𝑒𝑛𝑡ℎ𝑖𝑐 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒,𝑗 + 𝜀𝑗  
(3) 
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1.3.3 Camera trap models: 

For the motion detection and time-lapse camera traps, we built separate, but identical, 

models relating detection of HADU in a camera trap to the four covariates: number of trap 

nights, camera angle to the stream, stream feature, and the average number of photos taken per 

day (Table 1). In both cases, models spanned the period between when incubation and brood 

surveys were conducted. Trap nights and average number of photos per day were scaled and 

centered, and camera angle to the stream and stream feature were categorical variables. The 

model took the form: 

𝐿𝑜𝑔𝑖𝑡(𝑦) = 𝛽0 + 𝛽1𝑋𝑡𝑟𝑎𝑝 𝑛𝑖𝑔ℎ𝑡𝑠 + 𝛽2𝑋𝑐𝑎𝑚𝑒𝑟𝑎 𝑎𝑛𝑔𝑙𝑒 + 𝛽3𝑋𝑠𝑡𝑟𝑒𝑎𝑚 𝑓𝑒𝑎𝑡𝑢𝑟𝑒

+ 𝛽4𝑋𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦  
(4) 

1.4 Results: 

1.4.1 Ground-based foot survey: 

We completed 118 GBS over the two years; 50 occurred during the incubation period and 

68 during the brood rearing period. The mean probability of detecting HADU using a GBS was 

similar between the two periods (0.51 and 0.45), but their covariate relationships differed.  

During the incubation period, the mean probability of detecting HADU with a single, 5 

km, GBS was 0.51 (95% CI: 0.31 – 0.71). Mean QeDNA and CFS exhibited positive 

relationships with detection (p < 0.01, p = 0.094, respectively; Appendix 3). Based on these 

relationships, if a stream was expected to have only a single breeding female and a streamflow 

less than 200 CFS, on a 5 km stream reach, 15 days of GBS would be needed to achieve an 80% 

confidence in the stream being unoccupied if no ducks are detected, or 27 days to achieve a 95% 

confidence. By contrast, if a stream was expected to have two to six single females and a 

streamflow is greater than 200 CFS, on a 5 km stream reach, 3 days of GBS would be needed to 
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achieve an 80% confidence in the stream being unoccupied if no ducks are detected, or 6 days to 

achieve a 95% confidence (Table 3). 

During the brood rearing period, the mean probability of detecting HADU with a single, 

5 km, GBS was 0.45 (95% CI: 0.32 – 0.58). Mean QeDNA exhibited a positive relationship with 

detection while pace exhibited a negative relationship (p = 0.091, p = 0.078, respectively; 

Appendix 3). Based on these relationships, if a stream was expected to have only a single 

breeding female on a 5 km stream reach, 4 days of GBS would be needed to achieve an 80% 

confidence in the stream being unoccupied if no ducks are detected, or 7 days to achieve a 95% 

confidence (Table 3). Detection probability decreases with increased pace (Figure 3). 

1.4.2 Environmental DNA: 

 We collected 717 eDNA samples over the two years; 312 samples during the incubation 

period and 405 samples during the brood rearing period. The mean probability of detecting 

HADU using eDNA differed between the two periods (0.49 and 0.27), but their covariate 

relationships were similar. 

During the incubation period, the mean probability of detecting HADU at the mean CFS 

(214.81 ft2/sec) in a cobble stream, taking a single eDNA sample was 0.49 (95% CI: 0.23 – 

0.75). CFS exhibited a negative relationship with detection (p = 0.0516; Appendix 3). Based on 

this relationship, if a stream has a CFS in the range of 100-200, three eDNA samples would be 

needed to achieve an 80% confidence in the stream being unoccupied if no ducks are detected, or 

five to achieve 95% confidence (Table 4). 

During the brood rearing period, the mean probability of detecting a HADU at the mean 

CFS (116.50 ft2/sec) in a cobble stream, taking a single eDNA sample was 0.27 (95% CI: 0.11 – 

0.53). CFS exhibited a positive relationship with detection (p = 0.00208; Appendix 3). Based on 
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this relationship, if a stream has a CFS in the range of 100-200, four eDNA samples would be 

needed to achieve an 80% confidence in the stream being unoccupied if no ducks are detected, or 

six to achieve 95% confidence (Table 4). 

1.4.3 Camera traps: 

 We deployed 198 cameras over the two years; 99 of the cameras were set to time lapse 

and 99 cameras were set to motion detection. Cameras were deployed for 4,454 trap nights and 

2,325,060 photos (1,050,255 motion detection, 1,274,805 time-lapse) were collected. We 

processed all photos with AI detection confidence 0.5 – 1 (~30,000 photos) which took 85 hours 

(average 350 photos per hour). The mean number of photos collected per day on a motion 

detection camera was 486 and 864 photos on a time-lapse camera. The mean probability of 

detecting HADU using a camera trap was similar between motion detection and time-lapse (0.13 

and 0.16), but their covariate relationships differed. 

For a motion detection camera trap, the mean probability of detecting a HADU with a 

single camera pointed directly across the stream at a boulder, the most prevalent set up, was 0.13 

(95% CI: 0.04 – 0.32) when deployed for 22 days. Trap nights had a positive relationship with 

detection, and more trap nights resulted in higher detection (p = 0.0300; Appendix 3). Based on 

this relationship, if a motion detection camera is deployed for 21 – 28 days, 12 cameras would be 

needed to achieve an 80% confidence in the stream being unoccupied if no ducks are detected, or 

21 to achieve 95% confidence (Table 5). 

For a time-lapse camera, the mean probability of detecting a HADU with a single camera 

trap pointed directly across the stream at a run, the most prevalent set up, was 0.16 (95% CI: 0.07 

– 0.34) when deployed for 22 days. None of the four covariates were significant in predicting 

detection (Appendix 3).  
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1.4.4 Combing methods: 

 After analyzing each method, we calculated the cumulative detection probability of 

different combinations of these methods. The most effective combination for detecting HADU in 

a single day effort is combining a GBS with eDNA. During the incubation period observers can 

take five eDNA samples in tandem with a GBS to achieve a cumulative detection probability of 

0.97 (95% CI: 0.87 – 0.99) (Figure 4). During the brood rearing season observers would need to 

take nine eDNA samples in tandem with a GBS to achieve a cumulative detection probability of 

0.95 (95% CI: 0.80 – 0.99). Alternatively, observers can conduct two GBS, one during the 

incubation period and one during the brood rearing period, and set up four time-lapse game 

cameras for 22 days between the two visits to achieve a cumulative detection probability of 0.87 

(95% CI: 0.76 – 0.96) (Figure 4).  

1.4.5 Additional Analysis (lorelogram): 

To determine adequate spatial distribution of eDNA samples, we assessed spatial 

independence of our eDNA samples using a lorelogram (Heagerty & Zeger, 1998; Iannarilli et 

al., 2019). Lorelograms account for dependencies between the mean and variance and enable us 

to quantify correlation in binary data (Iannarilli et al., 2019). For this analysis, we used 717 

eDNA samples, along 10 streams, in 37 sample-days, with samples taken at scales ranging from 

250-1000m (Figure 2). While all streams had eDNA detections in all years, we constrained our 

dataset of samples to sampling occasions where between 15 and 85% of samples yielded 

detections to ensure we had spatial variation in the sample to work with. We applied the 

lorelogram to our eDNA detection / non-detection data to quantify how the correlation between 

eDNA samples changed with distance between eDNA samples at 250m, 500m, 750m, and 
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1,000m distances between samples. We found that the eDNA detections were correlated for the 

first 750 – 1,000m then approached 0 at distances ≥ 1,000m apart (Figure 5).  

1.5 Discussion: 

This study quantified the detection probability of GBS, eDNA, and camera traps to 

determine occupancy of HADU on their breeding streams during incubation and brood rearing 

periods. The most longstanding survey method, single day GBS, had a detection probability of 

~0.5 confirming biologists inclination that this method is not very effective. It is possible to 

attain a cumulative detection probability of >0.8 in a single-day effort with either multiple eDNA 

samples or by taking eDNA samples in tandem with a GBS. Effectively applying and combining 

methods requires both consideration of what covariates influence survey efficacy among 

methods and across seasons, and clear study objectives to guide method selection. We use this 

new understanding to provide recommendations for use of these approaches for HADU and 

similar stream-breeding waterbirds.  

For all survey methods, stream condition and implementation covariates influenced 

survey efficacy. For GBS, variation among observer bias explained more variation in detection 

probability than stream conditions. While this variation among observers is concerning, studies 

on citizen science programs have shown that proper training for observers can help reduce 

variance and improve survey performance; though our observers were trained, future surveys 

could be improved with additional training methods (Lewandowski & Specht, 2015). For eDNA, 

streamflow had the greatest effect on HADU detection but opposite interactions between the two 

time periods; during the incubation period detection decreased with increasing streamflow and 

during the brood rearing period detection decreased with decreasing streamflow. This outcome 

suggests that streamflow potentially exhibits a quadratic relationship with detection probability. 
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During the incubation period, stream flow typically increases due to spring runoff which could 

flush DNA out of the system at faster rates (Barnes et al., 2014; Curtis et al., 2021; Shogren et 

al., 2017). However, during the brood rearing season stream flows are typically reduced with 

water remaining shallow, less turbid, or potentially drying up completely (Whitlock et al., 2017). 

Therefore, lower detection probability with lower streamflow could be explained by increased 

DNA degradation when exposed to higher temperatures and more UV from the sun and /or 

increased DNA absorption by the benthic substrate at reduced flows (Barnes et al., 2014; Fremier 

et al., 2019; Shogren et al., 2017; Strickler et al., 2015). For camera traps detection probability 

increased with deployment duration. We did not find that camera angle or stream feature 

significantly influenced either model, but our protocol did not result in enough variability in 

these two categories to adequately assess this relationship.  

Detection probability varied between incubation and brood rearing seasons for GBS and 

eDNA. This could be explained by differences in behavior between the two time periods. Using 

GBS we detected a slight, although not statistically significant (0.06) decrease in average 

detection between the incubation period and the brood rearing period. Using eDNA we detected 

a 22% decrease in average detection between the incubation period and the brood rearing period. 

During the incubation period single females are distributed evenly across a stream which 

disperses DNA throughout the stream. During the brood rearing period, ducks are observed 

clustered together and the DNA may be more confined to certain reaches within the stream. This 

more patchy distribution of HADU along the stream may help explain the difference in eDNA 

detection between the incubation and brood rearing periods.  

These differences in detection probability between incubation and brood rearing periods 

suggest different survey approaches may be needed depending on the objective. Data collected 
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during the incubation period provides information about attempted breeding and stream 

occupancy. Data collected during the brood rearing season offers information about breeding 

success, since single females and females whose nests failed will have left the stream 

(MacCallum et al., 2021). Therefore, a lack of detection during the brood rearing period does not 

mean the stream was unoccupied during the incubation period and a detection during the brood 

rearing period is dependent on broods successfully fledging the nests. For example, if stream 

occupancy is of interest, it is better to survey during the incubation period. In contrast, if 

recruitment and nest success are of interest then surveying during the brood rearing season is 

better. We recommend that future surveys be planned for the period of interest depending on the 

study objectives. We also recommend that when making inference from historic survey data, the 

timing of the survey be considered.  

 Each survey method has information and resource effort trade-offs that are important to 

consider.  First, GBS, unlike eDNA and camera traps, do not require post-processing and thus 

provide immediate presence information. Additionally, because observers count the number of 

individual ducks during GBS, they provide estimates of relative abundance. These benefits, 

however, come at the expense of increasing cumulative detection probability: to increase 

cumulative detection requires multiple days which quickly increases the resources needed. 

Second, enough eDNA samples can be collected in a single field day to achieve a degree of 

cumulative detection that is not possible with either GBS or camera traps. Five eDNA samples 

spread across a 5km reach will yield >95% (95% CI: 3 - 12 samples) cumulative detection 

probability during the incubation period. However, eDNA can only tell us presence or absence of 

HADU within a short portion of the stream; therefore, we cannot say for certain the extent of the 

stream occupied. Notably, our post-hoc analysis using a lorelogram found that our eDNA 
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samples were spatially independent of one another at ~750 – 1,000 meters downstream which 

could indicate the distance of HADU DNA persistence. This outcome is consistent with some 

eDNA persistence studies in streams (Barnes et al., 2014; Fremier et al., 2019; Jane et al., 2015; 

Shogren et al., 2017), though a controlled experiment would be needed to verify this. Finally, 

camera traps can be deployed in otherwise hard to survey areas and multiple camera traps can be 

deployed or retrieved in a day, increasing cumulative detection probability. A notable drawback 

to camera traps is that they require two field days minimum—one to deploy and one to retrieve. 

Cameras also only provide presence or absence data as we cannot differentiate between 

individuals. Additionally, camera traps were the most labor and time intensive of the survey 

methods. Cameras require the most amount of time before, during, and after deployment per unit, 

and although detection probability increases with each day cameras were deployed, photo 

processing time also increased (Table 6). Because eDNA and cameras both require field days, if 

opting to use those methods, we recommend conducting a GBS simultaneously to provide both 

real-time and relative abundance data. If opting to use camera traps, we recommend using time-

lapse cameras because it is not as prone to issues relating to trigger sensitivity. 

This study provides a comprehensive understanding of the efficacy of non-invasive 

survey methods for monitoring stream-residing waterbirds and can inform techniques for 

improved monitoring of other species. Notably the life history of target species must be 

considered when applying any of these methods. Detection with eDNA could indicate different 

information depending on the species life history. For example, males of many stream residing 

waterbirds do not leave the females to raise the young alone or leave the streams altogether; 

therefore, an eDNA detection during brood rearing would confirm presence but does not confirm 

breeding success without visual confirmation of chicks, which GBS would provide. Importantly 
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though, eDNA could help identify active territories and important areas for conservation action 

for species that uphold a territory, such as the Torrent Duck (Merganetta armata), American 

Dipper (Cinclus mexicanus), or Blue Duck (Hymenolaimus malacorhynchos; Bakus, 1959; 

Eldridge, 1986; Ippi et al., 2018). Other life history characteristics such as multiple clutches or 

overlap in incubation and brood rearing season. (e.g. Spotted Sandpipers; Actits maculari; Reed 

et al., 2020) could impact inference of eDNA data. For other water dependent species who rely 

on water for prey, like ospreys (Pandion heliaetus), camera traps may be better than eDNA. 

Placement of camera traps could be tailored in ways that target shorelines which reduce photos 

triggered by water movement. Additionally, recent development in other non-invasive survey 

methods such as automated recording units (Shonfield & Bayne, 2017; Sidie-Slettedahl et al., 

2015; Stewart, 2023) and infrared drones (Bushaw et al., 2021; Dundas et al., 2021; Mackell et 

al., 2024) may be a useful complement to methods presented in this study.  

1.6 Management Implications: 

With this study, managers in the Northern Rockies have gained a greater understanding of the 

efficacy of various HADU detection tools which can help increase their confidence in their 

population estimates in the future, ultimately allowing them to make the most informed 

management decisions. However, choice of methodology depends on monitoring objectives and 

available effort.  

Method choice and timing is influenced by monitoring objectives. For example, for 

information about occupancy during attempted breeding it is better to survey during the 

incubation period, whereas for information about nest success, managers should survey during 

the brood rearing period.  
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For high detection probability in a single day the only options are to use eDNA. Combination 

of eDNA and GBS is both an efficient and effective approach for surveying HADU. Observers 

can reach a cumulative detection probability of >0.95 using only eDNA, however eDNA samples 

need to be spread throughout a stream therefore, we suggest also doing GBS. GBS in tandem 

with eDNA can help observers be more effective because GBS allow us to attain abundance data 

whereas eDNA can only give us presence / non detection data.  

Cameras were the least effective method, and we do not generally recommend them for 

HADU surveys, however they may be useful in terrain where a GBS and eDNA are impractical 

due to challenging terrain. A single camera may be the best way to determine the presence of 

HADU across the season in select locations.  

Finally, our study illustrates the value in combining methods for detecting cryptic, low 

abundance, waterbirds on streams and can inform a framework for a survey design for other 

stream residing species. However, if using this study as a framework, the method design needs to 

strongly consider the life history of the species of interest. 
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1.7 Figures and Tables:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: HADU North American range, with the study area in Western Montana and Northern 

Idaho and the selected breeding streams highlighted in inset map (BirdLife, 2022). 
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Figure 2: Detailed eDNA and camera trap sampling strategies.  
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Figure 3: Observer pace vs detection probability for a single ground-based foot survey during the 

brood rearing season.  
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Figure 4: Graphical abstract of chapter 1. (Top) Sampling framework of the three non-invasive 

survey methods (ground-based foot surveys, environmental DNA, and camera traps) assessed in 

this chapter. (Middle) Graph showing how cumulative detection probability increases with every 
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additional environmental DNA sample taken in tandem with a ground-based foot survey in a 

single day sampling effort. (Bottom) Graph showing how cumulative detection probability 

increases with two GBS and every additional time-lapse game cameras.   

 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: Lorelogram and 95% confidence intervals for distance between eDNA samples. 

Samples become spatially independent between 750 – 1,000m when 95% CI’s cross 0. 
 
 

 
 

 



27 
 

Table 1: Model covariates: Name, units, hypothesis, mean, range, and standard deviation for all models. 

Model Covariate Units Hypothesis 

Incubation 

Mean, Range, 

SD 

Brood Rearing 

Mean, Range, 

SD 

Ground-

based foot 

survey 

Pace 

Total kilometers 

surveyed by the 

observation team 

during the survey / 

number of hours 

between start and end 

of survey (km/hr) 

The quicker the pace observers are moving on a 

survey (higher pace value) detection probability will 

decrease because observers are spending less time 

observing for HADU. 

 

0.84 km/hr  

 

0.32 – 2.45 

km/hr 

  

0.373 

 

1.03 km/hr 

 

0.32 – 2.28 

km/hr 

 

0.412 

Number of 

observers 

Number of observers 

during each survey 

More observers on a survey may result in higher 

detection probability of detecting HADU because 

there are more people spotting ducks. However, more 

observers could also decrease detection if more 

observers result in HADU departing site prior to 

detection due to human disturbance. 

3 observers 

 

2 – 6 observers 

  

0.894 

3 observers 

 

2 – 5 observers 

 

0.712 

Streamflow 
Cubic feet per second 

(CFS) 

As CFS increases, navigating streams becomes more 

challenging and observers may be farther from the 

stream side, decreasing detection of HADU. 

218.00 cfs 

 

9.99 – 740.35 

cfs 

 

196.061 

118.16 cfs 

 

18.7 – 245.29 

cfs 

 

63.659 

Mean 

QeDNA 

Mean number of 

copies of HADU 

DNA per liter of 

water filtered across 

all the eDNA samples 

taken on a stream 

during the sampling 

occasion that the 

GBS took place. 

The higher the mean QeDNA is the higher the 

detection of HADU on a stream. Mean QeDNA is 

correlated with the observed high count (0.505) on 

each sampling occasion, and we used this metric 

instead of high count because it would be more 

independent of the method being assessed.  

12.6 DNA 

copies / L 

 

0.0 – 35.5 DNA 

copies / L 

 

12.007 

16.9 DNA 

copies / L 

 

0.0 – 154.5 

DNA copies 

/ L 

 

33.094 



28 
 

eDNA 

Streamflow CFS 

Streamflow will have a negative relationship with 

detection because the faster the stream is flowing the 

quicker the DNA is washed from the stream.  

214.8 cfs 

 

15.5 – 653.1 cfs 

 

168.126 

116.5 cfs 

 

29.2 – 245.3 cfs 

 

65.223 

Benthic 

substrate 

Boulder ( > 10 inches 

across) or cobble ( ≤ 

10 inches across) 

As benthic substrates increase in size, it will have a 

positive relationship with detection and boulder will 

have the highest detection probability. 

Cobble = 226 

Boulder = 70 

Na’s = 16 

Cobble = 313 

Boulder = 74 

Na’s = 18 

Camera 

traps 

Trap nights 
Number of nights the 

camera was deployed 

Trap nights will have a positive relationship with 

detection and the longer cameras are left out, the 

higher the detection probability will be.  

Motion 

Detection 

Mean, Range, 

SD 

Time Lapse 

Mean, Range, 

SD 

22 nights 

 

17 – 37 nights 

 

3.509 

22 nights 

 

17 – 37 nights 

 

3.549 

Average 

number of 

photos per 

day 

Total number of 

photos taken divided 

by the total number 

of trap nights 

Average number of photos taken per day will have a 

positive relationship with detection probability 

because the more photos that are taken the more 

likely a photo is to capture a HADU. 

486 photos 

 

0 – 4,379 

photos 

 

893.527 

576 photos 

 

0 – 1728 photos 

 

335.041 

Camera 

angle to the 

stream 

Upstream, 

downstream, across, 

down (direction 

unknown) 

Camera angle to the stream may affect detections 

because angle affects viewshed. This covariate is one 

way we are hoping to quantify field of view. 

Across = 59 

Up = 27 

Down = 10 

Na’s = 3 

Across = 64 

Up = 20 

Down = 9 

Na’s = 6 

Stream 

Feature 

Rapid, pool, run, and 

boulder 

Stream feature may affect detection because there 

may be certain features that are more likely to detect 

HADU than others such as boulders which provide 

loafing habitat in which a duck may spend more time 

in front of a camera as opposed to a rapid where they 

Boulder = 21 

Rapid = 21 

Run = 46 

Pool = 8 

Na’s = 6 

Boulder = 18 

Rapid = 30 

Run = 40 

Pool = 5 

Na’s = 6 
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may be hidden from the camera or harder to 

distinguish from the noise. 

 

 

 

 

 

 

Table 2: Sampling methods and strategies for assessing HADU occurrence. 

Method Sampling 

occasion 1 

Sampling 

occasion 2 

Sampling 

interval 

Explanation of sampling method 

Ground-Based 

Foot Survey 

Days 1-3 Days 1-3 5-8 km 

stream 

reach 

 

Observers walked upstream for five to 

eight kilometers looking for HADU. 

Observers collected data consistent 

with historical HADU surveys done in 

Montana (Hansen et al., 2019). 

eDNA Day 2 Day 2 Every 250 

m for first 

1,500 m 

then every 

500 – 

1,000 m 

Filter 5 liters of water per sample 

following USFS National Genomics 

Lab protocol (Carim et al., 2016). 

Camera Trap Day 1 Day 3 Every 

1600 

meters 

Two camera traps were placed every 

river mile of the survey stretch, one 

camera on a time-lapse set to take 

photos every 5 minutes and the other 

set to motion trigger. Cameras were 

deployed during the first visit and 

collected during the second visit. 
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Table 3: Expected number of HADU present and CFS range during the incubation and brood rearing periods and the mean detection 

probability of conducting a single GBS and the number of GBS needed to achieve a cumulative detection of 0.8, 0.9, and 0.95.  

Time 

Period 

Expected 

number of 

HADU on 

stream 

CFS range 

Mean 

detection 

probability 

for a single 

GBS 

95% CI 

Number of GBS to 

achieve a 

cumulative 

detection of 0.8 

Number of GBS to 

achieve a 

cumulative 

detection of 0.9 

Number of GBS to 

achieve a 

cumulative 

detection of 0.95 

Incubation 

period 

Low: 0 - 1 

< 200 CFS 

0.117 0.031 - 0.357 

15 surveys  

(95% CI: 64 - 4 

surveys) 

21 surveys  

(95% CI: 91 - 6 

surveys) 

27 surveys  

(95% CI: 118 - 7 

surveys) 

Medium: 2 - 6 0.316 0.131 - 0.589 

6 surveys  

(95% CI: 16 - 2 

surveys) 

8 surveys  

(95% CI: 23 - 3 

surveys) 

10 surveys  

(95% CI: 30 - 4 

surveys) 

High: 7 + 0.755 0.463 - 0.913 

2 surveys  

(95% CI: 3 - 1 

surveys) 

2 surveys  

(95% CI: 5 - 1 

surveys) 

3 surveys  

(95% CI: 6 - 2 

surveys) 

Low: 0 - 1 

> 200 CFS 

0.183 0.063 - 0.429 

9 surveys  

(95% CI: 29 - 3 

surveys) 

13 surveys  

(95% CI: 41 - 5 

surveys) 

16 surveys  

(95% CI: 53 - 6 

surveys) 

Medium: 2 - 6 0.467 0.272 - 0.675 

3 surveys  

(95% CI: 7 - 2 

surveys) 

5 surveys  

(95% CI: 9 - 3 

surveys) 

6 surveys  

(95% CI: 12 - 3 

surveys) 

High: 7 + 0.855 0.639 - 0.948 

1 surveys  

(95% CI: 2 - 1 

surveys) 

2 surveys  

(95% CI: 3 - 1 

surveys) 

2 surveys  

(95% CI: 4 - 1 

surveys) 

Brood 

rearing 

period 

Low: 0 - 1 
Not 

statistically 

significant 

0.379 0.253 - 0.524 

4 surveys  

(95% CI: 6 - 3 

surveys) 

5 surveys  

(95% CI: 8 - 4 

surveys) 

7 surveys  

(95% CI: 11 - 5 

surveys) 

Medium: 2 - 6 0.423 0.300 - 0.557 

3 surveys  

(95% CI: 5 - 3 

surveys) 

5 surveys  

(95% CI: 7 - 3 

surveys) 

6 surveys  

(95% CI: 9 - 4 

surveys) 
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High: 7 + 0.515 0.353 - 0.671 

3 surveys  

(95% CI: 4 - 2 

surveys) 

4 surveys  

(95% CI: 6 - 3 

surveys) 

5 surveys  

(95% CI: 7 - 3 

surveys) 

 

 

 

Table 4: CFS during the incubation and brood rearing period and the mean detection probably for a single eDNA sample and the 

number of eDNA samples needed to achieve a cumulative detection of 0.8, 0.9, and 0.95. 

Time 

Period 
CFS range 

Mean 

detection 

probability 

for a single 

eDNA samples 

95% CI 

Number of eDNA 

samples to achieve a 

cumulative detection of 

0.8 

Number of eDNA 

samples to achieve a 

cumulative detection of 

0.9 

Number of eDNA 

samples to achieve a 

cumulative detection of 

0.95 

Incubation 

period 

10 - 100 0.547 0.272 - 0.797 
3 samples  

(95% CI: 2 - 6 samples) 

3 samples  

(95% CI: 2 - 8 samples) 

4 samples  

(95% CI: 2 - 10 

samples) 

100 - 200 0.493 0.236 - 0.755 
3 samples  

(95% CI: 2 - 6 samples) 

4 samples  

(95% CI: 2 - 9 samples) 

5 samples  

(95% CI: 3 - 12 

samples) 

200 + 0.370 0.145 - 0.674 

4 samples  

(95% CI: 2 - 12 

samples) 

6 samples  

(95% CI: 3 - 16 

samples) 

7 samples  

(95% CI: 3 - 21 

samples) 

Brood 

rearing 

period 

10 - 100 0.321 0.118 - 0.627 

5 samples  

(95% CI: 2 - 14 

samples) 

6 samples  

(95% CI: 3 - 19 

samples) 

8 samples  

(95% CI: 4 - 25 

samples) 

100 - 200 0.411 0.169 - 0.704 
4 samples  

(95% CI: 2 - 9 samples) 

5 samples  

(95% CI: 2 - 13 

samples) 

6 samples  

(95% CI: 3 - 17 

samples) 
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200 + 0.571 0.272 - 0.824 
2 samples  

(95% CI: 1 - 6 samples) 

3 samples  

(95% CI: 2 - 8 samples) 

4 samples  

(95% CI: 2 - 10 

samples) 

 

 

 

Table 5: Number of trap nights for a motion detection camera and the mean detection probably for a single camera trap and the 

number of cameras needed to achieve a cumulative detection of 0.8, 0.9, and 0.95. 

Number of 

trap nights 

Detection 

Probability 

for a single 

motion 

detection 

camera 

95% CI 

Number of motion 

detection cameras to 

achieve a cumulative 

detection of 0.8 

Number of motion detection 

cameras to achieve a 

cumulative detection of 0.9 

Number of motion 

detection cameras to 

achieve a cumulative 

detection of 0.95 

1-7 0.005 0.000 - 0.095 

378 samples  

(95% CI: 10030 - 17 

samples) 

540 samples  

(95% CI: 14349 - 24 samples) 

703 samples  

(95% CI: 18668 - 31 

samples) 

7-14 0.015 0.002 - 0.117 
123 samples  

(95% CI: 1313 - 14 samples) 

175 samples  

(95% CI: 1878 - 19 samples) 

228 samples  

(95% CI: 2443 - 25 

samples) 

14-21 0.051 0.013 - 0.177 
37 samples  

(95% CI: 165 - 9 samples) 

52 samples  

(95% CI: 236 - 13 samples) 

67 samples  

(95% CI: 306 - 16 samples) 

21-28 0.154 0.045 - 0.402 
12 samples  

(95% CI: 39 - 4 samples) 

16 samples  

(95% CI: 55 - 6 samples) 

21 samples  

(95% CI: 72 - 7 samples) 
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Table 6: Effort per ground-based foot survey, eDNA sample, and camera trap.  

 
Pre-survey time 

required 

Post processing 

time 

Average time per 

sample 

Number of field 

days 

eDNA None 3-6 months 20 min 1 

Ground-based 

foot survey 
None None 6 hours 1 

Motion detection 

camera trap 
20 min 

1.4 hr per day 

camera is 

deployed 

20 min to set up 

5 min to take 

down 

2 

Time lapse 

camera trap 
20 min 

2.5 hr per day 

camera is 

deployed 

20 min to set up 

5 min to take 

down 

2 
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1.8 Appendix 

 

Appendix 1: Streams selected for chapter 1, management area, elevation, forest type, distance surveyed, and survey dates. 

Stream 
Management 

area 

Elevation 

(m) 
Dominant Forest Type 

Survey 

Distance 

Sampling 

Occasion Begin 

Dates 2022 

Sampling 

Occasion Begin 

Dates 2023 

Rock Stream 
Kootenai National 

Forest 
703 

Rocky mountain mesic montane 

mixed conifer forest (mesic – 

wet) 

5 km 
7/5/2022 & 

7/26/2022 

7/12/2023 & Not 

surveyed due to 

lack of water 

Marble Stream 
Idaho Panhandle 

National Forest 
884 

Rocky mountain mesic montane 

mixed conifer forest (mesic – 

wet) 

8 km 
7/18/2022 & 

8/8/2022 

7/17/2023 & 

8/7/2023 

Upper McDonald 

Stream 

Glacier National 

Park 
959 

Rocky mountain mesic montane 

mixed conifer forest (mesic – 

wet) 

8 km 
7/18/2022 & 

8/8/2022 

7/17/2023 & 

8/8/2023 

Nyack Stream 
Glacier National 

Park 
1,189 

Rocky mountain subalpine dry-

mesic spruce-fir forest and 

woodland & recently burned 

forest 

6.5 km 

Not surveyed due 

to high water 

causing 

inaccessibility & 

8/12/2022 

7/25/2023 & 

8/15/2023 

Spotted Bear 

River 

Flathead National 

Forest 
1,234 

Rocky mountain dry-mesic 

montane mixed conifer forest 
8 km 

8/1/2022 & 

8/22/2022 

Not surveyed due 

to ridge fire 

Trail Creek 
Flathead National 

Forest 
1,234 

Rocky mountain dry-mesic 

montane mixed conifer forest 
5 km 

7/27/2022 & 

8/15/2022 

7/31/2023 & 

8/21/2023 

Waterton River 
Glacier National 

Park 
1,335 

Rocky mountain subalpine dry-

mesic spruce-fir forest and 

woodland 

5.5 km 
8/3/2022 & 

8/17/2022 

8/2/2023 & 

8/23/2023 

North Fork Teton 

River 

Helena-Lewis & 

Clark National 

Forest 

1,495 Recently burned forest 5 km 
7/25/2022 & 

8/15/2022 

7/31/2023 & 

8/21/2023 

South Fork Sun 

River 

Helena-Lewis & 

Clark National 

Forest 

1,523 Recently burned forest 8 km 
8/1/2022 & 

8/22/2022 

8/7/2023 & 

8/28/2023 

Boulder River 
Custer-Gallatin 

National Forest 
1,551 

Rocky mountain montane 

Douglas-fir forest and woodland 
8 km 

8/1/2022 & 

8/22/2022 

8/7/2023 & 

8/28/2023 
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& Rocky mountain lodgepole 

pine forest 

 

 

Appendix 2. Data collected during ground-based foot surveys.  

Data Explanation 

Survey start and 

end time 

What time survey started and ended 

Time When was the bird seen. 

Species Some agencies record all waterbirds and some only record HADU, for the agencies that record all species they record 

the species four letter code here. 

Number of Birds Number of birds observed during survey 

Group Type Female, Male, Brood (female and young), Juvenile (YOY w/o adult) 

Chick Class Class 1: Downy, no feathers visible, Class 2: Partly feathered, Class 3: Fully feathered, flightless 

Coordinates Recorded in decimal degrees. 

Geographic 

Location 

Geographical reference. Ex: Bend after cliff band, at 3 km mark.  

Stream Location Pool: Deep slow water; Rapid: Fast moving water, breaking waves; Run: Fast moving water, no waves; Riffle: Shallow 

and Turbulent; Cascade: "stair stepping"; Confluence: Two streams merge; Laminar: Extremely glassy flow; Eddy: 

Swirling water; Edge: Along Shoreline 

Distance Away How far away from the bird the observer is when they spot it.  

Awareness Is the bird aware of the observer? 

Etho Indicate behavior upon first visual observation of duck and subsequent changes throughout time if it's behavior changes 

if it notices you. FO = Foraging, PR = Preening, RE = Resting, DE = Defense, AL = Alert, DI = Disturbance, CO = 

Courtship, SO = social interaction, SW = Swimming, FL = Flying 

Number of 

people on shore 

How many people are around, excluding the observers. 

Comments Any extra comments about the observation.  
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Appendix 3: Model outputs 

 

Model output for GBS incubation period:  
Estimate Standard 

Error 

Z Value P Value 

(Intercept) 0.056823 0.432327 0.131436 0.895431 

Pace -0.6688 0.622947 -1.07361 0.282998 

CFS 0.709034 0.422919 1.676525 0.093635 

Mean eDNA per L 1.91467 0.51708 3.702849 0.000213 

Number of observers -0.00667 0.409887 -0.01627 0.987018 

 

Model output for GBS brood rearing period: 

 Estimate Standard 

Error 

Z Value P Value 

(Intercept) -0.17707 0.268461 -0.65956 0.509539 

Pace -0.5441 0.308862 -1.76162 0.078134 

CFS -0.20796 0.266971 -0.77895 0.43601 

Mean eDNA per L 0.660941 0.391187 1.689578 0.091109 

Number of observers -0.02442 0.264062 -0.09248 0.926321 

 

Model output for eDNA incubation period:  
Estimate Standard 

Error 

Z Value P Value 

(Intercept) -0.04738 0.586641 -0.08076 0.935633 

CFS -0.29706 0.152646 -1.94606 0.051647 

Benthic substrate 

boulder 

0.237821 0.361699 0.657511 0.510852 

 

Model output for eDNA brood rearing period:  
Estimate Standard 

Error 

Z Value P Value 

(Intercept) -1.00275 0.563162 -1.78057 0.074982 

CFS 0.530269 0.171856 3.08554 0.002032 

Benthic substrate 

boulder 

0.677552 0.395895 1.711444 0.086999 

 

Model output for motion detection camera trap:  
Estimate Standard 

Error 

Z Value P Value 

(Intercept) -1.90733 0.74526 -2.55928 0.010489 

Camera angle - down 1.362877 0.941115 1.448152 0.147575 

Camera angle - up -0.64828 0.817218 -0.79328 0.427615 

Stream feature - pool 1.485855 1.401916 1.059875 0.289202 

Stream feature - rapid 0.691849 0.852967 0.811109 0.417303 
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Stream feature - run -0.21167 0.915991 -0.23108 0.817249 

Trap nights 0.621535 0.286416 2.17004 0.030004 

Average number of 

photos per day 

0.327987 0.261577 1.253885 0.209884 

 

Model output for time-lapse camera trap:  
Estimate Standard 

Error 

Z Value P Value 

(Intercept) -1.64531 0.490612 -3.3536 0.000798 

Camera angle - down -1.15153 1.140171 -1.00996 0.312515 

Camera angle - up -0.25821 0.667228 -0.38699 0.698767 

Stream feature - boulder 0.656888 0.72034 0.911913 0.361814 

Stream feature - rapid 0.746933 0.619972 1.204787 0.228286 

Stream feature - pool 1.347471 1.057836 1.2738 0.202734 

Trap nights 0.083013 0.266148 0.311906 0.755112 

Average number of 

photos per day 

0.386827 0.287584 1.345094 0.178595 
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Chapter 2: 

Where the ducks are: Predicting site-use of breeding Harlequin 

Ducks (Histrionicus histrionicus) in Western Montana and Northern 

Idaho 

2.1 Introduction: 

 The ability to predict where species are beyond where they have been monitored is 

essential for efficient conservation and management of biodiversity (Guisan et al., 2013; Jetz et 

al., 2012; Sofaer et al., 2019; Villero et al., 2017). Reliable species distribution models (SDM) 

help managers decide where to use limited resources, identify and protect critical habitats, 

support legally binding environmental regulations, conserve rare species, and mitigate the spread 

of invasive species (Sofaer et al., 2019; Villero et al., 2017). For example, Albera Natural Park, 

on the Iberian Peninsula, used an SDM to define the core distribution areas and important 

connectivity corridors between isolated populations of the endangered Hermann’s tortoise 

(Testudo hermanni subsp. Hermanni) when drafting their Special Protection Plan for the Natural 

Park (Villero et al., 2017). In another example, the United States Department of Agriculture 

Animal and Plant Health Inspection Service used an SDM to create predictive risk maps for the 

invasive European gypsy moth (Lymantria dispar dispar) to guide survey efforts to help detect 

and eradicate populations in the Pacific Northwest (Cook et al., 2019; Sofaer et al., 2019). 

Survey efforts of Harlequin Ducks (HADU; Histrionicus histrionicus), a species of 

conservation concern with specialized habitat requirements, have only covered a small portion of 

their breeding range in Western Montana and Northern Idaho (Idaho Department of Fish and 

Game, 2024.; Montana Natural Heritage Program, 2024). HADU are a rare and cryptic sea duck, 

with strong site fidelity, who breed along rugged, fast-moving, mid-sized whitewater streams in 

mountainous regions. They require streams with little human disturbance and complex stream 
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geomorphology, including braided channels, loafing rocks, rapids, deep pools for predator 

avoidance, streamside vegetation that provides nesting sites and predator protection, and 

backwaters to provide refuge for chicks (Bengtson, 1972; Cassierer et al., 1996; Kuchel, 1977; 

Reichel et al., 1996; Robertson & Goudie, 2020; Rodway et al., 1996). Despite being the focus of 

a mosaic of monitoring efforts by different agencies and non-governmental organizations, 

challenges accessing much of their habitat has limited implementation of widespread monitoring 

efforts. Thus, it remains unclear if recently observed declines on some breeding streams 

represent a regional trend.  

Declines of HADU breeding pairs and broods in several annually monitored streams has 

prompted widespread concern about their status and trends in Western Montana and Northern 

Idaho (Bate, Unpublished data; Holmes et al., in prep; Idaho Department of Fish and Game, 

2024.; Smith et al., 2023). These concerns are underscored by the constraints imposed on 

reproductive success resulting from males leaving the breeding grounds immediately after nests 

are established, preventing second nesting attempts if the first nest fails (Hansen, 2014; 

MacCallum et al., 2021). In the Northern Rockies, increasing human recreation and climate 

change-induced alterations to streamflow are hypothesized to threaten HADU (Cassierer et al., 

1996; Hansen et al., 2019; Kuchel, 1977), each of which would present different management 

implications. However, the inaccessibility of their habitat and low detection probability make it 

difficult to understand the extent of declines across the region and to disentangle annual 

variability in reproductive success from growing climate change and human disturbance threats 

(Cassierer et al., 1996; Hansen et al., 2019; Hansen, 2014; Kuchel, 1977; Soulliere & Thomas, 

2009). 
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An SDM could help support biologists who manage breeding HADU by identifying probable 

breeding streams beyond where surveys have been conducted in Western Montana and Northern 

Idaho. An integrated SDM is an approach that combines multiple datasets collected under 

different sampling schemes, and facilitates improved precision of estimates (Koshkina et al., 

2017; Miller et al., 2019; Pacifici et al., 2019; Strebel et al., 2022). Sampling schemes can 

include repeated structured surveys, omnibus surveillance monitoring, opportunistic incidental 

observations, or citizen science programs (Isaac et al., 2020; Koshkina et al., 2017; Landau et al., 

2022). By combining data types, an integrated SDM can leverage the strengths of each dataset 

and offset the weaknesses of others to create predictions of parameters informed by all available 

information (Landau et al., 2022). This approach is ideal for HADU in the Northern Rockies 

because the structured surveys traditionally used to monitor HADU by walking on foot along 

streams are sufficiently labor intensive that they have not been consistently conducted on many 

streams in the region (Montana Natural Heritage Program, 2024). While the data from these 

surveys facilitates accounting for low detection probability (Holmes et al., in prep) sampled sites 

represent limited variation in stream geomorphology relative to variation across the entire region. 

In complement, a much broader proportion of streams have other forms of detection / non-

detection, presence-only or absence-only data, facilitating representation of a broader geographic 

area and variation in stream geomorphology. A robust integrated SDM could help biologists 

facilitate a multi-stakeholder monitoring strategy to inform HADU conservation. An integrated 

SDM could help prioritize spatially explicit management actions, such as restricting the 

frequency of stream crossings when planning the construction of new roads, closing access to 

critical foraging habitat areas during sensitive brood rearing times, or conducting vegetation 

management around breeding streams (Cook et al., 2019; Guisan et al., 2013).  
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We used an integrated SDM to build a predictive occupancy model of breeding HADU in 

Western Montana and Northern Idaho. To build our integrated SDM, we used our knowledge 

about HADU habitat requirements and behavior coupled with all the available survey and 

observation data collected across the region. Below, we explain how the resultant geospatial map 

product can guide survey strategies depending on the management or information objective. 

Ultimately, this model can be used to support managers in understanding broader patterns of 

region wide HADU site-use as well as associated habitat requirements.  

2.2 Study Area: 

 The study area encompassed parts of the Rocky Mountains HADU breeding population 

in Montana and Idaho. Our boundary extended from the northeast boundary of Glacier National 

Park at the United States - Canada border, south along the Rocky Mountain front through the 

Gallatin National Forest to the Montana - Wyoming border and west to the Washington- Idaho 

border encompassing the Idaho panhandle (Figure 1).  

We surveyed streams throughout the study area. Breeding streams in the Idaho panhandle 

and northwest Montana that encompass the Northern Rockies ecoregion are typically found at 

lower elevations (1000 - 2000m) within mesic forest dominated by cottonwoods (Populus spp.), 

hemlock (Tsuga spp.) and Western Red Cedar (Thuja plicata). In southern and eastern areas in 

Montana that encompass the Canadian and Middle Rockies ecoregions, breeding streams are 

found in more xeric conifer forests at higher elevations (up to 2500m) (Reichel et al., 1996; US 

EPA, 2015b). 

2.3 Methods: 

We built an integrated SDM to predict potential site-use of HADU breeding streams 

using available data, following an approach developed by Strebel at. al (2022). This approach 
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enabled us to integrate multiple sources of detection / non-detection data by using an occupancy 

model where the different survey methods had their own detection functions (MacKenzie et al., 

2002; Tyre et al., 2003). Then using the posterior beta estimates from our occupancy model, we 

predicted HADU site-use across sites that were never surveyed, and we used our presence only 

and absence only data to inform predictive constraints on the predictions by censoring unsuitable 

habitat and incorporating known breeding observations. Below we explain each data source and 

how it is used in the model. Then we explain our habitat covariates and our modelling 

framework. 

2.3.1 Data sources: 

Data type 1: Detection / non-detection data  

 Detection non-detection data came from structured ground-based foot surveys (GBS) and 

environmental DNA (eDNA). GBS were conducted between 2009 and 2024, eDNA was 

collected from 2015 to 2024 and both types of surveys were done between July and September in 

all years. We used data between July and September because it corresponds to the time after 

males leave the females to incubate (Hansen, 2014; MacCallum et al., 2021). Field effort 

conducted in 2024 was specifically sited to fill spatial gaps in the available data using single-visit 

surveys that combined eDNA sampling with a GBS (Holmes et al., in prep).   

All GBS were completed by trained personnel who worked for Glacier National Park, the 

United States Forest Service, Montana Fish, Wildlife, and Parks, Idaho Department of Fish and 

Game, Montana Natural Heritage Program, or Montana Audubon. GBS consisted of at least two 

observers walking upstream in the stream. Observers surveyed unwalkable streams from the 

bank, taking turns watching the stream and walking through the brush so one person was always 

watching for HADU until it was safe to walk in the stream again (Hansen et al., 2019). GBS 
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ranged from 5km to 10km in distance. The number of visits to a stream varied from one to six 

times in a year and some streams were sampled in multiple years. For our analysis, surveys were 

broken into 1,600-meter stream reaches (hereafter sites), which match the breeding home range 

of a female HADU (Hansen, 2014). Sites where HADU were detected were assigned 1’s and 

sites that had no HADU detections were assigned 0’s. 

eDNA samples were taken in tandem with GBS in 2022 - 2024 with the same sites being 

re-surveyed in 2022 and 2023. eDNA samples from 2015 to 2021 were originally taken for 

fisheries projects that we analyzed for HADU. And each eDNA sample was considered as an 

individual replicate. eDNA samples were taken against direction of the stream flow. All samples 

were extracted at the National Genomics Center in Missoula, Montana, using a modified Qiagen 

DNEasy® Blood and Tissue Kit optimized for eDNA filters (Franklin et al., 2019). eDNA 

samples were analyzed for HADU DNA using a species-specific and sensitive quantitative 

polymerase chain reaction (PCR) assay developed by the National Genomics Center to detect a 

region of the HADU cytochrome c oxidase subunit I mitochondrial gene (Franklin et al. in prep). 

Extracts were then analyzed for the presence of HADU DNA in triplicate reactions using the 

optimized quantitative PCR assay conditions from Franklin et al. (in prep) on a QuantStudio 3 

Real-Time PCR System (Life Technologies). A sample was determined to have a HADU 

detection if at least one of the triplicate reactions amplified HADU DNA. Negative controls were 

included in the DNA extraction process by including samples that had filtered distilled water and 

in the quantitative PCR analyses by using distilled water as a replacement of the DNA template. 

All samples were tested for inhibition by including a TaqMan Exogenous Internal Positive 

Control in the quantitative PCR reaction. A sample was considered inhibited if the mean cycle 



48 
 

value (Ct) of the Internal Positive Control was more than one Ct delayed than the mean Ct of the 

Internal Positive Control in the negative control reactions.  

Data type 2: Presence only data 

Presence only data came from incidental HADU observations. Incidental observations were 

collected outside of a GBS between July and September from 2009 to 2024 and were censored to 

only include single females or broods. These data came from point observations submitted to 

agencies by other staff, visitors, or volunteers or citizen science (Idaho Department of Fish and 

Game, 2024.; Montana Natural Heritage Program, 2024) checklists submitted through eBird and 

iNaturalist. eBird and iNaturalist observations were verified by pictures and other users (eBird 

Basic Dataset, 2024; iNaturalist, 2024). These data, while not from a structured survey, 

represented places with observed breeding season occurrences; sites with these observations 

were fixed to high probability of occurrences in the predicted occupancy map. 

Data type 3: Absence only data 

HADU select for swift flowing montane streams, typically surrounded by conifer forested 

bank vegetation, with  little human disturbance (Cassierer et al., 1996.; Marks et al., 2016). 

Therefore, we used the National Land Cover Database (NLCD) in Google Earth Engine to 

remotely classify the most common non-water landcover at every site in our study area within a 

30 meter buffer of the stream (Gorelick et al., 2017; National Land Cover Database (NLCD) 

2021 Products | U.S. Geological Survey, 2018). Sites that were classified as pasture / hay, 

cultivated crops, or barren land were considered non-viable HADU habitat. We constrained the 

sites the model was predicting to based on these criteria. Strebel et al. (2022), used similar 

absence-only data to inform the latent state of the occupancy model; this depends on having 

absence-only data in places with detection/non-detection data, a criteria our dataset did not meet.  
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We also set the occupancy probability of streams that were classified as stream order 7 

through 9 to zero because we did not have any detection/non-detection data for those streams and 

use of those stream types for breeding is exceptionally rare in HADU. 

Habitat covariates: 

 We modeled HADU site occupancy using a suite of a priori habitat covariates, all of 

which were derived from remotely sensed data. Covariates were selected based on eight a priori 

hypotheses around known habitat requirements important for breeding HADU (Table 1). Our 

hypotheses fell under four main categories: stream geomorphology, streamflow, forest cover, and 

human disturbance. We required that covariates were available for the entire study area and were 

remotely sensed. Lacking remotely sensed measures of some stream geomorphological 

characteristics such as measures of rapids, braiding, deep pools, benthic substrate, and aquatic 

invertebrate populations, we utilized the River Continuum Concept to identify proxy variables 

(Doretto et al., 2020; Vannote et al., 1980). This concept describes a river system as a continuous 

gradient of physical and biotic characteristic adjustments from the top of the headwaters 

downstream. Applying this concept, we used stream order, slope and sinuosity to represent 

stream geomorphology. 

 The Strahler Stream order, a system used to classify the position of a stream within a 

river system (headwater = stream order 1, the Amazon River, the largest river in the world = 

stream order 12), is thought to capture processes that are a proxy for measuring stream 

geomorphology variables (Doretto et al., 2020; Strahler, 1957; Vannote et al., 1980). HADU are 

known to breed near cold water streams that provide suitable foraging habitat and nesting 

opportunities, and maintain flows needed to support brood rearing through August (Cassierer & 

Groves, 1994; Reichel et al., 1996; Smith et al., 2023). In Montana and Idaho, stream order tends 
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to be correlated with elevation where smaller order streams are higher in the mountains, often 

originating from glaciers or other snow fields, which are often colder (Carter et al., 1996). 

Furthermore, mid-sized streams (orders 4-6) tend to have the highest variability in temperature 

within a day which may lead to more diversity in aquatic invertebrates (Cummins & Klug, 1979; 

Vannote et al., 1980). The mechanism behind this process is that tree and shrub cover provide 

shade at different points of the day from the sun causing larger variation in daily temperature 

swings compared to small streams that are close to the consistent water source and large streams 

which are buffered from drastic temperature changes due to there being more water in the 

channel. In turn, this high variability in temperature creates optimal temperature ranges for 

multiple types of aquatic invertebrates which then may provide suitable foraging habitat for 

HADU (Minshall et al., 1983; Sitati et al., 2024; Vannote et al., 1980; Yates et al., 2018). Finally, 

stream order also explains the process of streams increasing in volume as they move away from 

their source and can be a proxy for annual flow (Hughes et al., 2010). While stream order 

captures broader scale variation in many aspects of stream geomorphology potentially relevant to 

HADU habitat, we sought to explain variation in stream slope and sinuosity at finer spatial scale 

through their inclusion as independent covariates. 

Slope impacts water velocity (steeper slopes have faster water) which in turn affects 

sediment erosion and deposition. Faster moving streams have more capacity to move larger 

sediments like boulders and cobbles which are predominant in places where HADU are often 

observed (McCabe, 2011; Montgomery & Buffington, 1997; US EPA, 2015a). HADU are also 

typically found in streams with a diversity of stream features including rapids, runs, pools, 

riffles, and braiding (Cassierer & Groves, 1994; Reichel et al., 1996). Therefore, we 

hypothesized slope might help us explain some stream features that are not available using 
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remote data because sites with steeper slopes may be indicative of sites that have rapids and 

steep drops where HADU are often observed (Montgomery & Buffington, 1997).  

Sinuosity can be an indicator of other stream features like deep pools, braiding and 

benthic substrate. For example, more sinuous streams tend to be deeper and have more pools, 

whereas streams that are braided tend to have low sinuosity and both braiding and deep pools are 

known features of streams that HADU are typically found in (Bravard & Petit, 2009). Sinuosity’s 

tie to benthic substrate is highly correlated with slope. Flatter streams tend to be more sinuous 

and have less velocity and therefore tend to have smaller benthic substrates and vice versa for 

steeper streams (Petrovszki et al., 2012; Schumm et al., 1972). 

We used the coefficient of variation (CV) of the Julian day of peak stream flow at the 

Hydrologic Unit Code, level 10 scale (HUC10) watershed level from 1996 to 2024 to represent 

water variability. We were interested in gauging water variability because changing streamflow 

regimens due to climate change may be a key driver in HADU irregular levels of reproductive 

success (Cassierer et al., 1996; Hansen et al., 2019). For example, fluctuations in the timing of 

peak flow could result in nests washing out more regularly or conversely, streams drying up 

earlier leaving HADU chicks vulnerable to predation (Kuchel, 1977). We were interested in 

assessing whether water variability impacted HADU breeding streams because over time, 

streams that have high variability may lose their populations due to reoccurring nest and brood 

losses. We took the Julian day that had the highest CFS flows for the HUC10 watershed across a 

thirty-year period (1996 – 2024), then we calculated to CV of those days to determine variability 

in peak flow over time in each watershed.  

We used the percent forest cover to represent vegetative protection from predators. HADU 

require vegetation to provide nesting habitat and refuge from predators (Bengtson, 1972; 
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Cassierer & Groves, 1994). Predators include Bald Eagles (Haliaeetus leucocephalus), aerial 

predators that may favor wider streams with less tree cover, and mink (Neovison vison), 

terrestrial predators that may raid nests (Heath et al., 2006). We took a 30-meter buffer from the 

center line of the stream to quantify tree cover around the streams (Arif et al., 2021; Sweeney & 

Newbold, 2014).  

We used the human footprint index to represent human disturbance. The human footprint 

index is a measure of permanent modifications to the landscape which includes human 

settlement, agriculture, transportation, mining and energy production, and electrical 

infrastructure (Kennedy et al., 2019). We used the same 30-meter buffer that we used to calculate 

the percent tree cover to calculate the human footprint within the vicinity of the stream.   

As a basis for deriving covariate values, we obtained all streams in Western Montana and 

Northern Idaho from the National Hydrography Dataset (NHD; Buto & Anderson, 2020), 

retained only named streams and split each stream into 1,600 meter line segments from the top of 

the headwater down, each representing a site. To obtain stream order, we spatially joined our 

1,600 meter lines with the NHDPlusFlowlineVAA dataset and assigned each line a stream order 

based on the largest overlap (Buto & Anderson, 2020). To derive stream sinuosity, we took the 

total length of the line and divided it by the straight-line distance from the top to bottom of each 

line. We then buffered each streamline 30 meters on both sides to create site polygons. Then, to 

obtain minimum and maximum elevation, mean percent tree cover, the mode landcover 

classification, and the mean human footprint index, we used the NASA SRTM Digital Elevation 

30m dataset, the Rangeland Analysis Platform to build a tree mask, the National Land Cover 

Database, and the CSP gHM: Global Human Modification dataset to clip values from each 

dataset to the site polygons from our shapefile (Allred et at., 2021;CSP gHM, n.d.; Farr et al., 
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2007; Jones et al. 2018; Jones et al. 2021; Kennedy et al., 2019; NASA SRTM Digital Elevation 

30m | Earth Engine Data Catalog, n.d.; NLCD 2021, n.d.; Platform, n.d.; US EPA, 2015b; 

Robinson et al., 2019). To obtain slope, we used the maximum elevation, minimum elevation, 

and length in meters of each site to calculate the rise over run. To obtain variation in streamflow, 

we used the Headwaters Hydrology Project Streamflow Predictions API in R to get the Julian 

day of peak runoff at the HUC10 for 1996 to 2024 which we used to calculate the CV in timing 

of peak runoff (Hoylman, 2025). Finally, we derived streamflow (cubic feet per second; CFS) for 

each day a GBS or eDNA was collected, as the mean streamflow for the HUC10 on the day the 

survey was completed (Hoylman, 2025). Mean streamflow was used as a habitat covariate in our 

detection model. Continuous covariates were z-standardized and correlation was assessed and 

none of our covariates were highly correlated.   

2.3.2 Statistical methods:  

 Within a Bayesian modeling framework, we used detection / non detection data in a site 

occupancy model to predict the probability of site-use given habitat covariates with hypothesized 

relationships to use. Detection probability was modeled separately for GBS and eDNA in relation 

to streamflow, which has a known effect on detection probability of both methods (Holmes, et al. 

in prep). We assumed closure across surveys for surveys conducted in the same site in the same 

year and due to strong breeding site fidelity of female HADU and breeding fidelity of offspring 

to their natal stream (Bengtson, 1972; Reichel et al., 1996; Smith et al., 2000). We generated 

posterior predictions of site-level occupancy probabilities of HADU from the final model for 

streams in our study area that were within our inclusion criteria. 
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Occupancy model 

To estimate the probability of site-level occupancy, ψi, across all sites, we used a 

hierarchical Bayesian model incorporating our hypothesized habitat covariates. For each site i, 

the probability of occupancy ψi was modeled as a function of habitat covariates using logistic 

regression: 

𝑙𝑜𝑔𝑖𝑡(𝜓𝑖) = 𝜖𝑠𝑡𝑟𝑒𝑎𝑚𝑂𝑟𝑑𝑒𝑟[𝑖] +∑𝛽𝑘𝑋𝑖𝑘 

6

𝑘=1

  

(5) 

where, 𝛽𝑘 represents the coefficient covariate value of the kth site-specific habitat covariate, 𝑋𝑖𝑘, 

parameter estimate on occupancy probability, and 𝜖𝑠𝑡𝑟𝑒𝑎𝑚𝑂𝑟𝑑𝑒𝑟[𝑖] represents a random intercept 

accounting for spatial variation among sites in different stream orders. All 𝛽𝑘 were assigned un-

informative priors (Normal (0, 10)). Stream orders were assigned autoregressive priors, with 

stream order one used as the reference category and given the prior logistic (0, 1). Stream orders 

two – six were given autoregressive normal priors (𝜖𝑗   ~ N (𝜖𝑗−1 , σ𝜖
2)).  where σ2 represents the 

variance in occupancy across stream orders. The occupancy state zi was modeled as a Bernoulli 

process: 

𝑧𝑖 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓𝑖) 
(6) 

Where zi = 1 if a site was occupied and zi = 0 if a site is unoccupied.   

Detection model 

For each site i at visit j, the probability of detection pi,j was modeled as a function of 

survey type and streamflow using logistic regression: 

𝑙𝑜𝑔𝑖𝑡(𝑝̂𝑖,𝑗) = (1 − 𝑠𝑡𝑖)(𝛾1 + 𝛾2𝑓𝑖,𝑗) + 𝑠𝑡𝑖(𝛾3 + 𝛾4𝑓𝑖,𝑗) 

(7) 
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where, 𝛾1 and 𝛾3 represents the intercept for eDNA surveys and GBS, respectively. 𝛾2 and 𝛾4 

represent the coefficient representing the effect of z-standardized CFS value of the ith site on the 

jth visit on detection probability. st represents the survey type. And f represents streamflow in 

CFS.  𝛾1 and 𝛾3 were assigned un-informative priors (logistic (0, 1)) and 𝛾2 and 𝛾4 were assigned 

un-informative priors (Normal (0, 10)). The observed detection yij followed a Bernoulli 

distribution: 

𝑦𝑖𝑗  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝̂𝑖𝑗 ∗  𝑧𝑖) 

(8) 

where, p represents the detection probability, drawn from an uninformative prior (logit (0, 1)), 

ensuring that all possible values of p between 0 and 1 were equally likely before incorporating 

data.  

We analyzed the data in R (R Core Team, 2023) and JAGS (Plummer, 2003) using the 

jagsUI package (Kellner, 2025). We sampled four MCMC chains for 200k iterations, and 

discarded the first 100k iterations as burn-in. We monitored convergence visually and via the 

Brooks-Gelman-Rubin statistic (𝑅̂; Brooks & Gelman, 1998). For each parameter described in 

the text we present medians, 95% Bayesian credible intervals, and when applicable, f, or the 

proportion of the posterior distribution on the same side of zero as the mean. We interpret f-

values and a covariate was considered to have strong evidence of a relationship to occupancy if 

the proportion of a covariate’s posterior distribution exceeding zero (f value) was greater than 

0.9, some evidence of an effect if f was between 0.9 and 0.8, and no evidence of an effect if f 

was less than 0.8. 

Predicting occupancy on un-surveyed sites:  

 To estimate occupancy probability at sites with no GBS or eDNA, we used mean 

posterior samples from the fitted model to generate predictions, confidence intervals, and 
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standard deviations. For sites that were classified as open water, developed, forest, shrubland, 

herbaceous, or wetland using the NLCD, and were stream orders 1 – 6  occupancy probability 

was predicted using the estimated regression coefficients and site-specific standardized covariate 

values. All continuous covariates were z-standardized. Sites that were classified as agriculture or 

barren by the NLCD or stream orders 7 – 9 were fixed to 0. And sites that had incidental 

observations were fixed to 0.9 occupancy probability. Though HADU exhibit strong breeding 

and natal site fidelity, observed declines in the HADU breeding population inherently means that 

some historically occupied breeding streams are no longer occupied. Therefore, it is important to 

acknowledge that we modeled relative site-use and not true occupancy (Emmet et al., 2021). 

2.4 Results: 

We collated detection / non-detection data at 1,025 out of 59,179 one-mile sites across 

Western Montana and Northern Idaho, from 2009 to 2024 (Table 2). Our model converged and 

there was no evidence of lack of fit for covariates (Table 3).  

In the model, there was strong support for negative linear effects of slope, sinuosity, and 

human footprint index on occupancy (f = 1, 0.939, and 0.967, respectively). There was some 

support for a positive effect of the CV in the Jullian date of peak runoff (f = 0.874) (Table 3, 

Figure 1, Figure 2). Stream order was used as an autoregressive random intercept and the model 

predicted the highest occupancy on filth order streams (Figure 3)  

 The model exhibited strong support for a positive effect of CFS on detection for eDNA 

and some support for a positive effect of CFS on detection for GBS (f = 1 and 0.878, 

respectively). The detection probability for GBS and a single eDNA sample on a first order 

stream, our intercept, was 0.12 and 0.45 respectively (GBS SD: 0.520 and 95% CI: 0.41 – 0.49; 

eDNA SD: 0.526 and 95% CI: 0.10 – 0.15).  
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 Posterior distributions of the covariates used in the occupancy model were then used to 

predict occupancy across all sites and we found that the mean predicted occupancy across the 

entire study area was 0.10 (SD: 0.04, 95% CI: 0.04 – 0.21; Figure 4). Predicted occupancy varied 

spatially, with the northeast portion of the study area that encompasses Glacier National Park 

exhibiting the highest mean probability of occupancy at 0.29 (SD: 0.07, 95% CI: 0.18 - 0.44, 

Appendix 2). We found that the southern portion of the study area that encompasses the 

Beaverhead-Deerlodge National Forest has the lowest predicted mean probability of occupancy 

at 0.07 (SD: 0.04, 95% CI: 0.02 – 0.17). 

2.5 Discussion: 

This study used an integrated SDM to leverage multiple data sources, providing the first 

regional-scale statistical model that predicts site-use of HADU in Western Montana and Northern 

Idaho. Using available HADU detection / non-detection data from 2009 to 2024 on 1,025 one-

mile stream sites, we modeled site-use in relation to remotely sensed habitat covariates. Four 

covariates (slope, sinuosity, mean human footprint index, and stream order) exhibited evidence 

of a strong effect of HADU site-use, and one covariate (CV of the Julian day of peak runoff) 

exhibited some evidence of an effect of HADU site-use. We used the posterior estimates from 

our occupancy model to estimate site use across all stream sites in the study area. Then, using 

these predicted metrics we created a predictive site-use map with the intention of creating a tool 

for biologists and land managers to support decision-making. 

The model broadly reflects our knowledge of HADU’s historic range in the region, 

validating what we knew about HADU while also identifying important areas to focus 

monitoring and management efforts (Idaho Department of Fish and Game, 2024.; Montana 

Natural Heritage Program, 2024). When we overlayed historic observations of HADU 
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(observations from late 19th century to 2009) onto our predicted site-use map, we found streams 

with historic records had high predicted site-use whether or not they had contemporary 

observations (Figure 5). This suggests these streams may still be suitable habitat. For example, 

three national forests in Northern Idaho (Idaho Panhandle, Nez Perce-Clearwater, and Bitterroot) 

had HADU observations pre-dating the study period; the last 15 years have had few observations 

in these areas, yet our model still predicted these areas to be suitable for breeding HADU (Figure 

6). The decline in observations could be due to lack of survey effort and not necessarily loss of 

HADU populations, as many areas with high predicted HADU site-use are hard to access.  

Notably, both contemporary and historical survey efforts are variable across the region, 

which is important to consider when interpreting spatial patterns. We attempted to fill in these 

spatial data gaps in 2024 by analyzing 230 eDNA samples previously collected from fisheries 

projects and surveying streams where we have not seen HADU since before 2009 following 

recommended protocols by Holmes et al (in prep) (Figure 8, Figure 9). Despite these efforts, 

disparity in data between certain areas remained (Figure 8), making it difficult to disentangle 

whether low predictive site-use is a product of low survey effort, low site-use or both. Future 

monitoring could target these areas to disentangle these factors. 

2.5.1 Remotely sensed habitat relationships: 

 We found that HADU site use was highest on stream orders three through five, consistent 

with previous studies (Morneau et al., 2008; Rine et al., 2022; Figure 3). Mid-sized streams may 

offer the most suitable conditions for the cold, clear streams, and suitable foraging habitat that 

HADU require. For example, lower order streams may dry up or become too shallow to provide 

refuge from predators, despite generally being colder, and larger order streams may be too warm 

for HADU. Mid-sized streams have enough water to provide suitable habitat yet are still 
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relatively cold. Mid-sized streams are also thought to have higher aquatic invertebrate diversity 

than smaller order streams which may provide suitable foraging habitat for HADU (Cummins & 

Klug, 1979; Doretto et al., 2020). This diversity, coupled with the fact that HADU are visual 

feeders may also explain why they tend to prefer the clear water of mid-order streams 

(MacCallum, 2001). The turbidity of larger order streams may limit visibility, compromising 

HADU foraging ability.  

 Slope and sinuosity, while related to stream order at broad scales (Vannote et al., 1980), 

further refined our model of HADU site use, presumably by reflecting processes that relate to 

more fine scale effects of benthic substrate and unquantified stream features preferred by HADU 

(e.g. rapids, runs, pools, riffles, and braiding). We found opposite relationship of slope and 

sinuosity to site use than we expected. Typically, as streams become less steep they become more 

sinuous (Miller, 1988). Our results show that HADU prefer less steep streams, as well as those 

that are less sinuous. Since none of these covariates measure specific stream features directly 

(i.e. exact benthic substrate, number of pools, rapids and waterfalls), future work to quantify 

these important habitat characteristics using remotely sensed data could be beneficial.  

We found strong evidence for a negative relationship between HADU breeding site-use 

and human disturbance. Human footprint index is a measure of permanent anthropogenic 

stressors on the landscape (human settlement, agriculture, transportation, mining and energy 

production, and electrical infrastructure; Kennedy et al., 2019) and therefore our results are 

indicative of human disturbance from development negatively impacting HADU site-use, and do 

not directly quantify or implicate disturbance from recreation (e.g. people with boats, fishing, or 

swimming). For example, two well-known areas that have high recreation, but different human 

footprint index values are the Lower Rattlesnake Creek near Missoula, Montana and Upper 
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McDonald Creek in Glacier National Park. The lower section of Rattlesnake Creek is part of a 

popular, high-use, recreational area where locals and visitors flock every summer to go hiking 

and fishing. Lower Rattlesnake Creek, however, is surrounded by neighborhoods, roads, and 

trails and it has a mean human footprint index of 0.59 and a mean probability of site-use of 0.01. 

In comparison, Upper McDonald Creek in Glacier National Park is also known for having 

extremely high recreation as is parallels the famous Going-to-the-Sun Road that roughly three 

million people drive every summer. McDonald Creek is highly accessible to park visitors and 

people love to swim and fish at the many pullouts along the road. Despite the high visitation, it 

has a mean human footprint index of only 0.015 and a mean probability of site-use of 0.77. It is 

important to distinguish the different types of disturbance because there is the assumption that all 

forms of human disturbance are bad for HADU, and there is growing concern about the impact 

from human recreation (Cassierer et al., 1996; Hansen, 2014; HADU working group, personal 

communications, 2025). As of now, there are no direct studies examining human recreation 

impacts on breeding HADU site-use. Given concern related to the potential threat of recreation 

as more people are recreating on streams which used to see little to no use, research into impacts 

on HADU would be informative for management (Idaho Department of Parks and Recreation, 

2023; Lant, 2024; Unites States Forest Service, 2025).   

We found weak evidence for a positive relationship with the CV in the Julian day for 

peak streamflow and HADU site-use. Our results indicate that HADU potentially prefer slightly 

less predictable watersheds for when peak runoff happens year to year. We have two ideas as to 

why this pattern was observed: (1) by using a single peak runoff day rather than identifying a 

multi-day high water period, we may not have identified the most consequential high water 

period of the season for breeding HADU; (2) if high water is temporally more variable (more 
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early or late dates), it is potentially less likely to interfere with the incubation period when nests 

are at risk of being washed out resulting in reproductive failure. Other measures that may 

represent inter-annual variability more precisely might be using a window of time in which 

streamflow is highest such as a week or ten days, or looking at how high the peak in streamflow 

was relative to the median flow (Smith & Boers, 2023).  

We did not find evidence of a relationship between HADU site use and mean percent tree 

cover. Mean percent tree cover was used as a proxy variable for protection and did not include 

riparian vegetation composed of shrubs such as willow, so may have been an underestimation of 

the actual provided vegetation protection. 

Management Implications: 

 The objective of this study was to build a predictive site-use map to provide a foundation 

for building a more robust HADU monitoring program in the Northern Rockies. Below we 

provide recommendations for different uses of this model depending on the information or 

management objective: 

1. Determine region wide known species distribution: This model could help biologists and 

managers prioritize where to conduct surveys and/or resampling eDNA to determine 

whether HADU are using certain streams. To understand regional species distribution 

with high confidence requires broad spatial coverage with high detection (Murphy & 

Smith, 2021). To decide where to sample, we recommend first using our model to 

identify streams with high predicted site-use that have historic records of breeding 

HADU but where HADU have not been detected in recent years. Second, the model 

could identify areas with high probability of site-use that are easily accessible but have 

never been surveyed. Finally, depending on time and resources, the model could identify 
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more difficult to access areas with high probability of site-use that have never been 

surveyed. This approach provides an effort-sensitive approach to improving information 

about distribution. To achieve high detection probability, we recommend using methods 

from Holmes et. al (in prep), where observers collect six eDNA samples (one every 

kilometer) in tandem with a GBS. This method has a mean cumulative detection 

probability of 95% (95% CI: 0.85 – 0.99). 

Two additional sources of occupancy data, pre-existing eDNA samples and 

targeted outreach, could supplement new survey efforts or provide data related to 

distribution in situations where resources are limited and structured surveys are not 

feasible. HADU share many of the same habitat requirements as well-studied trout 

species in Montana and Idaho (e.g. Bull Trout, Salvelinus confluentus; Yellowstone 

cutthroat trout, Oncorhynchus clarckii bouvieri; and Westslope cutthroat trout 

Oncorhynchus clarcii lewisi; Rieman & McIntyre, 1993) and preexisting eDNA samples 

may be available for analysis through the eDNAtlas (Yates et al., 2018). If sampling pre-

existing eDNA we recommend identifying streams using the approach described above 

and selecting streams with multiple eDNA samples since cumulative detection probability 

increases with each sample; Holmes et al. (in prep) found that eDNA detection 

probability varies with streamflow and suggests taking between six and nine samples on a 

stream. Finally, if re-sampling eDNA, we recommend only using samples that were 

collected between June and July because that corresponds to the single female and early 

brood rearing season where occupancy is expected to be the most relevant to 

understanding breeding populations (MacCallum et al., 2021). Additionally, targeting 
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outreach to encourage reporting of HADU observations by visitors and other staff can 

supplement other HADU occurrence data (Kelling et al., 2019; Stenhouse et al., 2020).  

 

2. Evaluating regional changes in use of breeding streams: This model could help biologists 

and managers prioritize where to conduct surveys to evaluate fluctuations in HADU use 

of breeding streams (Elzinga et al., 1998). Evaluating changes in use of breeding streams 

requires knowledge of locations where streams had been used by HADU historically, but 

have been locally extirpated (Robinson et al., 2018). However, populations could also be 

colonizing new breeding streams. As such, evaluating change in use of breeding streams 

would require broad spatial coverage with high detection, repeated over time (Block et 

al., 2001). Information about changes in use is more actionable when those changes are 

assessed with respect to potential causal factors (Scheele et al., 2018). We suggest using 

the model to identify a sample of higher predicted use streams that represent the variation 

in factors hypothesized to be causing changes. For example, understanding effects from 

recreation or wildfire on HADU occupancy could help inform management actions on 

other streams experiencing similar pressures. Management actions could include options 

like seasonal boating closures in sensitive areas or conducting vegetation management to 

help forests around important breeding streams be more resilient to wildfire (Montana’s 

State Wildlife Action Plan, 2025). If, alternatively, what is desired is an assessment of 

whether streams that were known to be used by breeding HADU historically are still used 

by HADU, then known historic occurrences should be used to identify sites for 

monitoring instead of the predicted site use map. After identifying a set of breeding 

streams to be resampled, similar to region wide known species distribution, we would 
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recommend monitoring streams with one effective visit by following the protocol laid out 

by Holmes et al. (in prep). 

 

3. Evaluate trends in Abundance on breeding streams: Evaluating trends in abundance 

requires counts of HADU over time (Ficetola et al., 2018; Wauchope et al., 2019). The 

model from this work could be used to identify potential important breeding streams 

across the region of interest that could be a part of a monitoring program where the 

selected streams are re-visited both within a season and across years on a regular basis. If 

there is interest in making inference about the trends in the region based on the collected 

data, the selected streams must be representative of that region (Fedy et al., 2015). We 

would recommend following the HADU survey protocol laid out by Holmes et al. (in 

prep), determining the appropriate amount of GBS survey effort that would be required to 

achieve a high detection probability based on the stream condition of the selected 

streams. Holmes et al. (in prep) found that streamflow, the expected number of HADU on 

a stream, and timing significantly affected the detection probability of a GBS. For 

example, to achieve a 0.9 cumulative detection probability on a stream with a streamflow 

greater than 200 CFS, with an estimated two to six HADU, during the incubation period 

(late June – July), biologists would need to conduct five GBS within a year. Then to get 

abundance trends over time, the surveyed streams would need to be revisited at a regular 

interval across years (Wauchope et al., 2019).  

 

4. Mitigating effects of development: Managers are often tasked with reviewing project 

proposals (e.g. development of new roads and structures or logging operations) and 
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assessing the potential impact of the project on species of concern (Emerson et al., 2022; 

US EPA, 2013). This model could be used to determine if the proposed project falls 

within HADU breeding habitat. We recommend using the high detection protocol laid out 

by Holmes et al. (in prep) to survey any stream with a predicted probability of site use 

greater than 0.1. This threshold should ensure monitoring of 85% of potential HADU 

sites. To give the highest probability of detection, we recommend completing these 

surveys in early July when females are incubating or chicks are just fledging, and single 

females are still on the stream (MacCallum et al., 2021). If HADU are detected actions to 

mitigate impacts on breeding HADU include: maintaining a 100m buffer zone around the 

stream, avoiding road placement in the valley bottoms, restricting the frequency of stream 

crossings, building bridges instead of using culverts, minimizing turbidity through 

management of runoff from upslope worksites, and conducting work outside of HADU 

breeding season (Montana’s State Wildlife Action Plan, 2025).  
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2.7 Figures and Tables: 

 

 
Figure 1: Posterior distributions of covariates included in occupancy model are represented in 

green. 50% confidence intervals are indicated by dark black line and 95% confidence intervals 

are indicated by thin black line. f statistic is listed on the right which indicates how much of the 

posterior distribution is on the same side of 0.  
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Figure 2: Covariate effect plots showing the effect of the covariates that had strong or some 

evidence of an effect on occupancy (slope, sinuosity, mean human modification index, and the 

CV in Jullian data of peak flow) on the probability scale. 
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Figure 3: Estimates of occupancy for each stream order and its 95% confidence intervals. 

 

 

 

 
Figure 4: Predictive HADU site-use map across Western Montana and Northern Idaho. Darker 

red indicated high probability of site-use. 
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Figure 5: Predictive HADU site-use map across Western Montana and Northern Idaho with confirmed breeding observations of 

HADU from 1874 to 2009 on the left and breeding observations of HADU from 2009 to 2024 on the right. 
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Figure 6: Map of Idaho with the Bitterroot, Nez Perce – Clearwater, and Idaho Panhandle 

National Forests overlaid with the results from the predictive site-use model and historic 

observations of breeding HADU in red and breeding observations from 2009 – 2024 in green. 
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Figure 7: Map of Western Montana with National Forests and Glacier National Park overlaid 

with the results from the predictive site-use model and historic observations of breeding HADU 

in red and breeding observations from 2009 – 2024 in green.
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Figure 8. Survey Effort: Map showing all detection / non-detection data included in the occupancy model. All GBS conducted between 

2009 – 2023 are highlighted in purple. GBS collected in 2024 for this study are highlighted in brown. Streams where eDNA was 

analyzed from previously collect fisheries projects are highlighted in green. 
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Figure 9: Presence only observations of HADU. These points come form incidentals and citizen science observations.
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Table 1: Hypotheses and selected covariates. 

Category  Process  Hypothesis  Covariate  

Streamflow 

Water 

Variability 

Streams with high variability in the timing of 

peak runoff are less likely to be occupied by 

HADU due to the increased risk of nests 

washing out during the incubation period or 

streams drying during the brood rearing season 

leading to loss of protective habitat from 

predators. 

 

Streams with more consistent flow (lower 

seasonal variability) are more suitable for 

HADU occupancy, as they provide stable 

nesting and brood-rearing conditions. 

 

CV in the 

Julian day of 

peak stream 

flow 

Mean 

Annual 

Flow 

HADU prefer mid-sized streams (3rd – 5th 

order) because these streams provide suitable 

foraging habitat and nesting opportunities. 

Smaller streams may lack the consistent flow 

needed to support brood rearing, while larger 

streams may be too turbulent for foraging. 

Stream 

Order` 

Forest Protection 

Streams with higher percentages of forest 

cover have increased HADU occupancy 

because dense forest cover provides essential 

refuge from predators and buffers against 

human disturbance, creating safer breeding 

environments. 

Percent tree 

cover 

Disturbance 
Human 

disturbance 

HADU occupancy will be lower in streams 

within basins experiencing higher levels of 

human disturbance, due to potential loss of 

breeding habitat, increased noise, and 

recreational activity, which can disrupt nesting 

behavior and reduce brood-rearing success. 

Mean human 

foot print 

index 

Stream 

Geomorphology 

Benthic 

Substrate 

HADU occupancy will be higher in streams 

with boulder and cobble substrates, as these 

features provide increased loafing habitat in 

the middle of the stream and are indicative of 

favorable streamflow patterns that enhance 

foraging opportunities (River continuum 

theorem). 

Stream order 

and slope 

Temperature 

(water and 

air) 

HADU occupancy will decrease in streams 

with temperatures above 10°C, as they are 

cold-water habitat specialists. Colder streams 

may limit invertebrate productivity and 

indicate delayed snowmelt, which could 

restrict early access to nesting sites. However, 

Stream order 
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moderate to low temperatures are likely 

optimal for HADU. 

Stream 

Oxygen 

HADU occupancy will decrease with lower 

levels of stream oxygen, as reduced oxygen 

availability may negatively impact invertebrate 

productivity limiting foraging opportunities 

and habitat quality for nesting and brood-

rearing. 

Stream order 

Channel 

complexity 

HADU occupancy will increase in streams 

with more channel complexity because it 

provides better habitat for both foraging and 

predator protection. 

Slope and 

sinuosity  

 

 

 

 

 

 

 

 

 

 

Table 2: Summary of sites with GBS data only, eDNA data only, and sites with both GBS and 

eDNA detection / non detection data. 

Type of detection / non 

detection data 

Number of sites with HADU 

detections 

Total number of sites with 

detection / non detection 

data 

GBS only 60 701 

eDNA only 9 154 

Both GBS and eDNA 47 170 
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Table 3: Mean probabilities of each parameter in the occupancy model and mean standardized 

effect sizes for covariates. Asterisk represents covariates whose 95% credible interval did not 

overlap zero. f represents the portion of the posterior distribution that had the same sign as the 

mean effect with f > 0.9 indicating strong evidence of an effect and 0.8 > f < 0.9 indicating weak 

evidence of on occupancy. R̂ is our MCMC chain convergence. 

Parameter Mean SD 2.5 % 97.5 % f 𝑹̂ 

Occupancy 

*Slope -1.840 0.567 -3.031 -0.807 1.000 1.000 

Sinuosity -0.241 0.157 -0.550 0.065 0.939 1.000 

% tree 

cover 
-0.110 0.211 -0.532 0.301 0.701 1.000 

Human 

foot print 

index 

-0.377 0.215 -0.817 0.025 0.967 1.000 

CV in 

timing of 

peak flow 

0.206 0.181 -0.144 0.566 0.874 1.000 

*Stream 

order 1 
-1.968 0.820 -3.793 -0.533 0.995 1.000 

*Stream 

order 2 
-2.216 0.660 -3.695 -1.135 1.000 1.000 

*Stream 

order 3 
-1.669 0.327 -2.340 -1.057 1.000 1.000 

*Stream 

order 4 
-0.896 0.308 -1.497 -0.293 0.998 1.000 

Stream 

order 5 
-0.649 0.420 -1.453 0.205 0.938 1.000 

Stream 

order 6 
-1.116 0.609 -2.317 0.106 0.966 1.000 

Detection 

*Intercept 

eDNA 
-0.194 0.080 -0.352 -0.038 0.992 1.000 

*CFS 

eDNA 
0.253 0.070 0.119 0.391 1.000 1.000 

*Intercept 

GBS 
-1.952 0.103 -2.155 -1.752 1.000 1.000 

CFS eDNA 0.107 0.091 -0.075 0.283 0.878 1.000 
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2.8 Appendix: 

 

Appendix 1: Mean occupancy for each stream order on the probability scale with its standard 

deviation and 95% confidence intervals.  

Stream 

order 

Mean 

occupancy 
SD 2.5 % 97.5 % 

1 0.123 0.694 0.022 0.195 

2 0.098 0.659 0.024 0.149 

3 0.159 0.581 0.088 0.191 

4 0.290 0.576 0.183 0.335 

5 0.343 0.603 0.190 0.409 

6 0.247 0.648 0.090 0.324 
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Appendix 2: Land managing agency, district, and the mean probability of HADU site-use with its 

95% credible intervals and standard deviation. 

Agency District 

Mean Probability of 

Occupancy and 

95% CI 

SD 

Glacier National Park Glacier National Park 
0.293 

(0.18 – 0.44) 
0.070 

USFS - Montana 

Flathead National 

Forest 

0.169 

(0.09 – 0.28) 
0.052 

Helena – Lewis & 

Clark National Forest 

0.120 

(0.06 – 0.21) 
0.040 

Custer Gallatin 

National Forest 

0.076 

(0.03 – 0.15) 
0.033 

Kootenai National 

Forest 

0.128 

(0.06 – 0.23) 
0.045 

Beaverhead-

Deerlodge National 

Forest 

0.076 

(0.02 – 0.17) 
0.039 

Lolo National Forest 
0.101 

(0.05 – 0.19) 
0.038 

USFS – Montana and 

Idaho 

Bitterroot National 

Forest 

0.097 

(0.04 – 0.18) 
0.036 

USFS - Idaho 

Nez Perce – 

Clearwater National 

Forest 

0.129 

(0.06 – 0.23) 
0.046 

Idaho Panhandle 

National Forest 

0.134 

(0.07 – 0.23) 
0.043 

Montana Fish 

Wildlife and Parks 

All of Montana in 

study area 

0.103 

(0.04 – 0.21) 
0.046 

Region 1 
0.133 

(0.06 – 0.24) 
0.048 

Region 2 
0.081 

(0.03 – 0.18) 
0.041 

Region 3 
0.079 

(0.02 – 0.19) 
0.046 

Region 4 
0.191 

(0.10 – 0.32) 
0.057 

Region 5 
0.083 

(0.04 – 0.16) 
0.034 

Idaho Department of 

Fish and Game 

All of Idaho in study 

area 

0.108 

(0.05 – 0.21) 
0.043 
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